2.4. Импульсная переходная функция
Эта характеристика также используется для описания одноканальных объектов вида (2.5).
Импульсная переходная функция (характеристика) g(t) представляет собой реакцию на входное воздействие типа единичной импульсной функции при нулевых начальных условиях (рис. 2.5).
Такое входное воздействие математически отражает дельта-функция, которая обладает следующими свойствами:
С помощью дельта-функции можно описать реальное входное воздействие типа удара. В действительности импульсные входные воздействия на объект всегда конечны по уровню и продолжительности. Однако если их длительность намного меньше длительности переходных процессов, то с определенной точностью реальный импульс может быть заменен дельта-функцией с некоторым коэффициентом.
Импульсная переходная функция позволяет вычислить реакцию системы на произвольное входное воздействие при нулевых начальных условиях по выражению
Если система имеет нулевые начальные условия х(0)=0, то выражение (2.14) принимает вид:
При небольших размерах или простой структуре матрицы объекта А выражение (2.18) может быть использовано для точного представления переходной матрицы с помощью элементарных функций. В случае большой размерности матрицы А следует использовать существующие программы для вычисления матричного экспоненциала.
- Предмет теории автоматического управления
- Основные понятия и определения
- Основные понятия и определения
- 1.3. Примеры систем управления
- Динамические характеристики линейных систем
- Дифференциальные уравнения
- 2.4. Импульсная переходная функция
- 2.6. Передаточная функция
- 2.7. Модальные характеристики
- 2.8. Частотные характеристики
- Заключение
- 3. Структурный метод
- 3.1. Типовые динамические звенья
- 3.1.1. Пропорциональное (усилительное) звено
- 3.1.2. Дифференцирующее звено