2. Контроль влажности и запыленности газа
Влажность воздуха играет большую роль в процессах сушки формовочных материалов и приготовления контролируемых атмосфер термических печей, в устройствах кондиционирования воздуха. Влажность во многом определяет санитарно- гигиенические условия труда.
Измерительные приборы, предназначенные для измерения величин, характеризующих влажность газов, получили название гигрометров или влагомеров.
Для контроля и измерения влажности газов используют многочисленные методы, основанные на различных принципах. Наибольшее практическое распространение получили психрометрический и сорбционный методы.
Психрометрический метод основан на использовании изменения степени охлаждения поверхности увлажненного тела при испарении с нее воды. Степень охлаждения поверхности зависит от параметров влажности газа, омывающего эту поверхность. Рассмотренное явление носит название психрометрического эффекта. В приборах, принцип действия которых основан на психрометрическом эффекте, измерение осуществляется с помощью двух термометров: сухого и влажного. Испарение влаги с поверхности резервуара влажного термометра происходит тем интенсивнее, чем ниже влажность воздуха. Поэтому в условиях термодинамического равновесия разность показаний сухого и влажного термометров характеризует влажность воздуха и называется психрометрической разностью.
Рис. 91. Электрический подогреваемый преобразователь влажности газа
Рис. 92. Оптическая система измерителя запыленности
Сорбционный метод измерения влажности газов основан на измерении электрических свойств влагосорбирующего материала в зависимости от изменения влажности окружающей среды.
Сорбционный метод измерения влажности используется в кулонометрических и электролитических влагомерах. Принцип действия кулонометрического влагомера основан на непрерывном поглощении влаги из контролируемого газового потока пленкой гидрофильного вещества и одновременном разложении воды в толще пленки путем электролиза на водород и кислород. В установившемся режиме значение электролитического тока является мерой влажности контролируемого газа. Погрешность прибора не превышает 6%.
Электролитические влагомеры работают по принципу зависимости электрических свойств чувствительного элемента от влажности окружающего газа. Такие преобразователи по конструктивному выполнению подразделяют на подогреваемые и неподогреваемые. Первые получили наибольшее распространение.
Принцип действия электролитического подогреваемого преобразователя основан на измерении температуры гигрометрического равновесия. В этом преобразователе (рис. 91) используют свойство гигроскопичности хлористого лития. На запаянную с одного конца кварцевую трубку 1 наносят слой стеклоткани 2, пропитанный хлористым литием. Поверх стеклоткани наматывают две не соединяющиеся друг с другом проволоки 3 из благородных металлов, выполняющих роль электродов. На электроды подается переменный ток. Во внутрь кварцевой трубки помещают термометр сопротивления 4. При соприкосновении газа, содержащего водяные пары с хлористым литием, последний увлажняется, образуя электролит. Так как на электроды подается напряжение, то через электролит потечет ток, который приведет к разогреву преобразователя и постепенному испарению влаги. Процесс испарения будет сопровождаться охлаждением преобразователя. Спустя некоторое время между процессом насыщения парами газа и Испарением влаги наступит равновесие. Температура равновесия является мерой, Влажности газа, так как по ее значению может быть определена точка росы. Этот преобразователь позволяет осуществлять автоматический контроль точки росы в процессе изготовления и подачи контролируемых атмосфер в рабочее пространство нагревательных печей.
Измерители запыленности осуществляют контроль запыленности воздушной среды и технологических газов, а также контроль концентрации аэрозольных, частиц.
Промышленность выпускает анализаторы запыленности типа АЗ. Они предназначены для определения запыленности воздуха и технологических газов, проверки эффективности работы технологических воздушных и газовых фильтров, определения концентрации аэрозоля в воздухе, нахождения источника запыленности аэрозольными частицами.
Прибор представляет собой фотоэлектрический счетчик аэрозольных частиц с пределами измерения концентрации пыли от 1 до 300 000 частиц в литре. В приборе имеется переключатель размера регистрируемых частиц с 0,4 до 10 мкм.
Принцип работы прибора основан на рассеивании света аэрозольными частицами. При этом существует количественная зависимость между размерами частиц и интенсивностью рассеянного света. Чувствительным элементом прибора является оптический преобразователь (рис. 92). Анализируемая пыль просачивается через измерительную полость 10 преобразователя с постоянным расходом. Перпендикулярно измерительной плоскости расположены источник света 6, два объектива 7 и 9 и диафрагма 8, создающая сфокусированный световой луч. Под прямым углом к нему установлены объектив 5 и диафрагма 4, которые фокусируют луч, направленный от источника света 6 к фотоэлектронному усилителю 3. Модулятор светового потока 2, призмы 1 и 11 служат для контроля и калибрования размеров частиц пыли.
Если в измерительной полости пыли нет, то фототок в фотоэлектронном усилителе отсутствует. При попадании пыли в измерительную камеру от ее частиц появляется рассеянный свет, и на выходе усилителя образуется электрический сигнал. Длительность сигнала пропорциональна времени пролета частиц через полость, а его амплитуда определяется размерами частиц.
Количество пыли определяется в зависимости от измеряемого предела по электромеханическому счетчику или по шкале показывающего прибора, отградуированной в единицах измерения запыленности (части на один литр).
- А.Г. Староверов основы автоматизации производства
- Глава 1. Общие сведения о системах автоматики и составляющих ее элементах
- 1. Основные понятия и определения
- 2. Классификация систем автоматического управления
- 3. Элементы автоматических систем
- Глава 2. Первичные преобразователи
- 1. Общие сведения и классификация первичных преобразователей
- 2. Потенциометрические первичные преобразователи
- 3. Индуктивные первичные преобразователи
- 4. Емкостные первичные преобразователи
- 5. Тензометрические первичные преобразователи
- 6. Фотоэлектрические первичные преобразователи
- Глава 3. Усилители и стабилизаторы
- 2. Электромеханические и магнитные усилители
- 3. Электронные усилители
- 5. Стабилизаторы
- Глава 4. Переключающие устройства и распределители
- 1. Электрические реле
- 2. Реле времени
- 3. Контактные аппараты управления
- 4. Бесконтактные устройства управления
- Наименование н обозначение логических функций н элементов
- 5. Вспомогательные устройства
- Глава 5. Задающие и исполнительные устройства
- 1. Классификация задающих и исполнительных устройств
- 2. Задающие устройства
- 3. Электрические исполнительные механизмы
- Раздел II. Контрольно-измерительные приборы и техника измерения параметров технологических процессов
- Глава 6. Общие сведения об измерении и контроле
- 1. Основные метрологические понятия техники измерения и контроля
- 2. Погрешности измерений
- 3. Методы измерения и классификация. Контрольно-измерительных приборов
- Глава 7. Контроль температуры
- 1. Температурные шкалы. Классификация технических приборов и устройств измерения температуры
- 2. Термометры расширения
- Технические характеристики стеклинных ртутных, термометров типа тт
- Технические характеристики дилатометрических гермометров
- 3. Манометрические термометры
- Характеристики манометрических термометров
- 4. Термоэлектрические термометры
- Основные характеристики термоэлектрических термометров
- Технические характеристики милливольтметров
- 5. Термометры сопротивления и термисторы
- Технические характеристики термометров сопротивления
- 6. Бесконтактное измерение температуры
- 7. Техника безопасности при контроле температуры
- Глава 8. Контроль давления и разрежения
- 1. Общие сведения и классификация приборов
- 2. Манометры
- Технические характеристики показывающих и сигнализирующих манометров
- 3. Тягонапоромеры
- Технические характеристики тягомеров, напоромеров и тягонапоромеров
- 4. Вакуумметры
- Технические характеристики промышленных вакуумметров
- 5. Техника безопасности при контроле давления
- Глава 9. Контроль расхода, количества и уровня
- 1. Общие сведения и классификация приборов
- 2. Расходомеры
- Технические характеристики ротаметров
- Технические характеристики шариковых расходомеров
- 3. Счетчики жидкостей и газов
- Технические характеристики счетчиков жидкостей и газов
- 4. Счетчики и весы твердых и сыпучих материалов
- 5. Уровнемеры жидкостей и сыпучих материалов
- Технические характеристики поплавковых уровнемеров с пружинным уравновешиванием
- Технические характеристики буйковых уровнемеров
- 6. Техника безопасности при контроле расхода, количества и уровня
- Глава 10. Контроль специальных параметров
- 1. Контроль состава газа
- 2. Контроль влажности и запыленности газа
- 3. Контроь влажности сыпучих материалов
- 4. Контроль плотности жидкости
- 5. Техника безопасности при контроле специальных параметров
- Раздел III. Автоматическое управление, контроль и регулирование
- Глава 11. Системы автоматики с программным управлением
- 1. Общие принципы построения систем
- 2. Интуитивный метод разработки схем управления
- 3. Аналитический метод разработки схем управления
- Глава 12. Автоматическая блокировка и защита в системах управления
- 1. Системы автоматической блокировки
- 2. Системы автоматической защиты
- Глава 13. Системы автоматического контроля и сигнализации
- 1. Структура и виды систем
- 2. Измерительные системы с цифровым отсчетом
- 3. Системы централизованного контроля
- 4. Системы автоматической сигнализации
- Глава 14. Системы автоматического регулирования
- 1. Основные понятия и определения
- 2. Обыкновенные системы регулирования
- 3. Самонастраивающиеся системы регулирования
- 4. Качественные показатели автоматического регулирования
- Глава 15. Объекты регулирования и их свойства
- 1. Общие сведения
- 2. Параметры объектов регулирования
- 3. Определение основных свойств объектов
- Глава 16. Типы регуляторов
- 1. Классификация автоматических регуляторов
- 2. Регуляторы прерывистого (дискретного) действия
- 3. Регуляторы непрерівного действия
- 4. Выбор типа регуляторов и параметров его настройки
- Формулы для определения параметров настройки регуляторов
- Глава 17. Конструкции и характеристики регуляторов
- 1. Регуляторы прямого действия
- 2. Электрические регуляторы косвенного действия
- 3. Гидравлические регуляторы косвенного действия
- 4. Пневматические регуляторы косвенного действия
- 5. Техника безопасности при эксплуатации регуляторов
- Раздел IV. Микропроцессорные системы
- Глава 18. Общая характеристика микропроцессорных систем
- 1. Основные понятия и определения
- 2. Организация работы вычислительной машины
- 3. Производство эвм
- 4. Структура эвм
- Глава 19. Математическое и программное обеспечение микроЭвм
- 1. Системы счисления
- 2. Правила перевода одной системы счисления в другую
- 3. Формы представления чисел в эвм. Машинные коды
- 4. Основы программирования
- Глава 20. Внешние устройства микроЭвм
- 1. Классификация внешних устройств
- 2. Внешние запоминающие устройства
- 3. Устройства для связи эвм – оператор
- 4. Внешние устройства связи эвм с объектом
- Глава 21. Применение микропроцессорных систем
- 1. Состав систем автоматики с применением микроЭвм
- 2. Управление производственными процессами
- Раздел V. Промышленные роботы и роботизированные системы
- Глава 22. Общие сведения о промышленных роботах
- 1. Основные определения и классификация промышленных роботов
- 2. Структура промышленных роботов
- 3. Основные технические показатели роботов
- Глава 23. Конструкции промышленных роботов
- 1. Промышленные роботы агрегатно-модульного типа
- Технические данные агрегатной гаммы промышленных роботов лм40ц.00.00 [9]
- Технические характеристики и области обслуживания типового ряда промышленных роботов [9]
- Технические данные модулей агрегатной гаммы рпм-25 [9]
- 2. Интерактивные промышленные роботы
- 3. Адаптивные промышленные роботы
- 4. Захватные устройства
- 5. Приводы промышленных роботов
- Глава 24. Системы управления промышленными роботами
- 1. Назначение и классификация систем управления
- 2. Унифицированные системы управления
- Технические данные унифицированных систем управления уцм [9]
- Технические данные унифицированных систем управления упм [9]
- Технические данные контурных систем управления укм [9]
- 3. Информационные системы
- Глава 25. Роботизация промышленного производства
- 1. Основные типы роботизированных систем
- 2. Гибкие производственные системы с применением промышленных роботов
- 3. Техника безопасности при эксплуатации роботов
- Приложение Буквенные обозначения элементов электрических схем
- Список литературы