Структурные схемы радиоприемников.
В настоящее время находят применение приемники прямого усиления, регенеративные, суперрегенеративные, супергетеродинные с одинарным и двойным преобразованиями частоты. Рассмотрим более подробно структурные схемы приемника прямого усиления и супергетеродинного. На рис. 2.19 представлена структурная схема приемника прямого усиления.
Рис. 2.19. Структурная схема приемника прямого усиления
Входная цепь (ВЦ) выделяет полезный сигнал из всей совокупности колебаний, наводимых в антенне от различных радиопередатчиков и других источников электромагнитных колебаний, ослабляет мешающие сигналы. Усилитель радиочастоты (УРЧ) усиливает поступающие из входной цепи полезные сигналы и обеспечивает дальнейшее ослабление сигналов мешающих станций. Детектор (Д) преобразует модулированные колебания радиочастоты в колебания, соответствующие передаваемому сообщению: звуковому, телеграфному и др. Усилитель звуковой частоты (УЗЧ) усиливает продетектированный сигнал по напряжению и мощности до величины, достаточной для приведения в действие оконечного устройства (громкоговорителя, реле, приемной телевизионной трубки и др.). Оконечное устройство (ОУ) преобразует электрические сигналы в исходную информацию (звуковую, световую, буквенную и др.).
Приемник прямого усиления не может обеспечить хорошую избирательность и высокую чувствительность, особенно в диапазонах коротких и ультракоротких волн. Это объясняется тем, что по мере повышения частоты возрастает полоса пропускания резонансной цепи. Так, полоса пропускания одиночного контура 2∆fи его добротностьQсвязаны соотношением 2∆f = fc/Q, гдеfc- частота принимаемого сигнала.
На высоких частотах полоса пропускания контура возрастает и кроме полезного сигнала контур будет пропускать помеху.
Заметим, что сделать селективную цепь приемника прямого усиления с прямоугольной или даже близкой к ней характеристикой практически невозможно, так как этот контур должен быть перестраиваемым. Фильтры, обеспечивающие прямоугольные характеристики, -это многоконтурные системы, перестраивать которые одной ручкой настройки невозможно. В связи с этим приемник прямого усиления обладает плохой избирательностью.
Усилитель радиочастоты, осуществляющий усиление радиосигналов с различными несущими частотами, при наличии неизбежной паразитной обратной связи (например, через источники питания или паразитные емкости) может самовозбудиться и превратиться в автогенератор. Вероятность самовозбуждения растет с ростом частоты и коэффициента усиления. Для повышения устойчивости работы УРЧ его коэффициент усиления приходится ограничивать. Поэтому чувствительность приемника прямого усиления оказывается относительно низкой. Например, для того чтобы УРЧ обеспечил на входе детектора необходимое для линейного детектирования напряжение около 0,1 В, напряжение на его входе, характеризующее чувствительность, должно быть не менее 1000 мкВ. Плохая избирательность и низкая чувствительность, изменяющиеся в рабочем диапазоне частот, являются существенными недостатками приемника прямого усиления, ограничивающими его использование.
Рис. 2.20. Структурная схема супергетеродинного приемника
От указанных недостатков свободен супергетеродинный приемник (рис. 2.20). Его отличительной особенностью является использование в нем преобразователя частоты, состоящего из смесителя (С) и гетеродина (Г). На выходе преобразователя мы получаем промежуточную частоту, усиливаемую в дальнейшем усилителем промежуточной частоты (УПЧ).
Преобразователем частоты называется устройство, предназначенное для переноса спектра сигнала из одной области частот в другую без изменения амплитудных и фазовых соотношений между компонентами спектра. Поскольку при таком переносе форма спектра сигнала не меняется, то не будет меняться и закон модуляции сигнала. Изменяется только значение несущей частоты сигналаfc, которая становится равной некоторой преобразованной частотеfпр.
К преобразователю частоты кроме напряжения сигнала с частотой fcподводится напряжение гетеродина (маломощного автогенератора) с частотойfг. При взаимодействии этих напряжений в преобразователе частоты возникают составляющие различных комбинационных частот, из которых используется только одна. Обычно используется составляющаяfпр=fг-fc.
На практике значение fпробычно меньше частоты несущей сигналаfc, но больше частоты модулирующего сигналаfc. Поскольку преобразованная частотаfпрзанимает промежуточное значение междуfcиFc, то она называется промежуточной частотой.
Название "супергетеродин" составное (супер+гетеродин), в котором слово "гетеродин" указывает на характерный для супергетеродинных приемников каскад - гетеродин. Этот каскад является неотъемлемой частью преобразователя частоты. Приставка "супер" означает, что в супергетеродинных приемниках преобразованная частота fпррасположена в области частот выше (сверх) частоты модуляцииFc.
Преобразование несущей частоты радиосигнала в промежуточную приводит к улучшению фильтрации соседних каналов радиосвязи. Например, пусть в антенне действует ЭДС сигналов с несущими частотами f1= 20 МГц (полезный сигнал) иf2= 20,2 МГц. Относительная разность частот между станциями ∆f / f1= (20,2 - 20)/20 = 0,01 = 1 %. Контур в радиочастотном диапазоне имеет добротность 20-50, т.е. относительную полосу пропускания 5-2 %. В рассматриваемом примере станцияf2отличается от избранной всего на 1 % и поэтому будет создавать заметную помеху. Если произвести преобразование несущей частотыf1, то при частоте сигнала гетеродинаfг= 20,5 МГц получаются две промежуточные частотыfпр1= 20,5 - 20 = 0,5 МГц иfпр2= 20,5 - 20,2 = 0,3 МГц, относительная разность между которыми ∆f/f1=(0,5 - 0,3) / 0,5 = 40 % . Как видно, относительная разность увеличилась от 1 до 40 %. В этих условиях станция, работающая на частотеf2, не будет помехой для фильтров преобразователя частоты, настроенных на частотуfпр= 0,5 МГц, даже если их добротность соизмерима с добротностью контуров УРЧ.
В супергетеродинных приемниках основное усиление и избирательность осуществляются после преобразования частоты в усилителе промежуточной частоты (УПЧ). Важным достоинством супергетеродинного приемника является то, что в процессе его перестройки на другую станцию промежуточная частота fпрне меняется. Достигается это за счет того, что при перестройке приемника на другую частоту сигналаfcодновременно изменяется частота гетеродинаfгтаким образом, чтобы разностьfг-fc=fпросталась неизменной.
Следовательно, при перестройке супергетеродинного приемника достаточно изменить резонансные частоты входной цепи, УРЧ и гетеродина. Перестраивать УПЧ при этом не требуется. Поскольку УПЧ не перестраивается, то его характеристики не меняются. При этом частотная характеристика контуров УПЧ может быть получена достаточно близкой к прямоугольной, так как в нем могут быть использованы фильтры любой степени сложности. Именно по этой причине супергетеродинные приемники обеспечивают высокую избирательность.
Поскольку УПЧ работает на существенно более низкой частоте, чем УРЧ, он может обеспечить существенно большее усиление, так как усилительные свойства элементов улучшаются по мере понижения частоты. Кроме того, при снижении частоты уменьшится влияние паразитных обратных связей, что способствует повышению коэффициента устойчивого усиления УПЧ. Это позволит обеспечить высокую чувствительность супергетеродинного приемника (около 1 мкВ).
Недостатком супергетеродинных приемников является наличие в них побочных каналов приема, главным из которых является зеркальный.
Рис. 2.21. К вопросу возникновения зеркальной помехи
Зеркальный канал имеет несущую частоту fзерк, отличающуюся от частоты полезного сигналаfcна удвоенную промежуточную частотуfзерк=fc+fпр(рис. 2.21). Частотыfcиfзеркрасположены зеркально симметрично относительно частоты гетеродинаfг. Разность междуfзеркиfгравна промежуточной частоте, как и в случае полезного сигнала. Поэтому, если на преобразователь частоты поступают сигналы станцийfcиfзерк, то на его выходе обе станции дадут напряжение промежуточной частоты. Если сигнал частотыfcявляется полезным, то сигнал частотыfзерк, попавший на преобразователь, является помехой. Очевидно, что ослабление помехи по зеркальному каналу должно происходить до преобразователя частоты. Для улучшения избирательности по зеркальному каналу промежуточная частота должна быть высокой. Тогда несущие частотыfcиfзеркзначительно различаются. При этом коэффициент передачи входной цепи (она тоже обладает резонансными свойствами) на частотеfзерксущественно меньше, чем на частотеfc, и сигнал "зеркальной" станции будет значительно подавлен входной цепью. При наличии в приемнике УРЧ зеркальная помеха дополнительно подавляется за счет избирательных свойств УРЧ.
Однако при высокой промежуточной частоте уменьшается коэффициент устойчивого усиления УПЧ и расширяется его полоса пропускания, что приводит к снижению чувствительности приемника и его избирательности по соседнему каналу. Как видно, требование к величине промежуточной частоты довольно противоречиво.
Другим побочным каналом является канал, частота которого равна промежуточной. Сигнал такой частоты, поступающий на вход преобразователя, без каких-либо изменений попадает на УПЧ. Для его устранения радиовещательные станции не должны работать на промежуточной частоте, а случайные помехи с частотами, близкими к промежуточной, должны быть подавлены соответствующими фильтрами на входе приемника.
В бытовых радиовещательных приемниках несущая частота составляет 465 кГц, т.е. она расположена в "окне" между границами радиовещательных диапазонов ДВ и СВ - 285,5... 525 кГц.
В приемниках, работающих на магистральных линиях радиосвязи, требуются более высокие чувствительность и избирательность как по соседнему, так и по зеркальному каналам. Это невозможно выполнить при выборе одной промежуточной частоты, поэтому в таких приемниках применяют двойное преобразование частоты. При двойном преобразовании частоты первую промежуточную частоту выбирают достаточно высокой (около 1 МГц), за счет чего обеспечивается высокая избирательность по зеркальному каналу. Вторая промежуточная частота выбирается достаточно низкой (около 100 кГц), что позволяет получить высокий коэффициент устойчивого усиления в каскадах УПЧ и таким образом повысить чувствительность приемника при высокой избирательности по соседнему каналу.
- Министерство образования и науки российской федерации
- Содержание
- 2.2. Аналого-цифровые и цифро-аналоговые преобразования сигналов. Цифро-аналоговые преобразователи
- Аналого-цифровые преобразователи
- Занятие 2
- 2.4. Фильтры, их классификация и основные характеристики.
- Занятие 3
- 3.2. Современные цифровые интегральные микросхемы Общие сведения
- Системы счисления и двоичные коды
- Булева алгебра
- Взаимное соответствие булевых функций и логических схем
- 1.6. Логические элементы
- Параметры микросхем
- Занятие 4
- 3.4. Генераторы Генераторы гармонических колебаний Принцип работы генератора гармонических колебаний
- Генераторы lc-типа
- Генераторы прямоугольных колебаний (мультивибраторы) Мультивибраторы на транзисторах
- Мультивибраторы на основе цифровых интегральных схем
- Занятие 5
- 4. Акустоэлектрические и электроакустические конверторы энергии сигналов. Основные соотношения электроакустического преобразователя
- Физические принципы преобразования
- Занятие 6
- 6.1. Методы и средства записи, хранения и воспроизведения информации на магнитных носителях. Принципы магнитной записи
- Особенности процесса магнитной записи, воспроизведения и стирания сигналограмм Воспроизведение магнитной записи
- Основные физические закономерности
- Шумы, помехи и искажения при магнитной записи
- Шумы магнитной ленты
- Аддитивные шумы и помехи
- Выпадения сигналов
- Занятие 7
- 6.1.1. Носители магнитной записи
- Строение лент и используемые материалы
- Характеристики магнитных лент
- Магнитные ленты для аналоговых магнитофонов
- Занятие 8
- 6.1.2. Магнитные диски
- Размещение информации на дисках
- Адресация информации на диске
- Накопители на жестких магнитных дисках
- Дисковые массивы raid
- Занятие 9
- 7. Электромагнитные системы передачи и приема информации, их классификация. Системы и каналы передачи данных
- Системы передачи данных и их характеристики
- Линии и каналы связи
- Занятие 10
- 8.2. Особенности распространения радиоволн
- Распространение сверхдлинных и длинных волн.
- Распространение средних волн.
- Распространение коротких волн.
- Распространение миллиметровых и субмиллиметровых волн.
- Занятие 11
- 8.4. Фидеры Классификация проводных линий связи
- Рекомендации по выбору и эксплуатации фидеров
- Занятие 12
- 8.6. Приемные устройства Назначение и классификация радиоприемных устройств.
- Основные показатели радиоприемников.
- Структурные схемы радиоприемников.
- Занятие 13
- 9.1.2. Структура телевизионных приемников
- Структура телевизионного приемника
- Занятие 14
- 10. Системы двухпроводной связи. Принцип телефонной связи.
- Dect-телефония
- Компьютерная телефония
- Интернет-телефония
- Системы сотовой радиотелефонной связи
- Занятие 15
- 11.2. Организация связи с помощью эвм, телекоммуникационные сети. Классификация и архитектура информационно-вычислительных сетей
- Виды информационно-вычислительных сетей
- Локальные вычислительные сети
- Виды локальных вычислительных сетей
- Занятие 16
- 12.2. Спутниковая связь.
- Орбиты исз.
- Особенности передачи сигналов.
- Методы ретрансляции.
- Антенное оборудование.
- Сети спутниковой связи.
- Занятие 17
- 13.2. Основы измерений информативных характеристик электромагнитных полей.
- Библиографический список литературы