7.2. Принцип коммутации
В основе MPLS лежит принцип обмена меток. Любой передаваемый пакет ассоциируется с тем или иным классом сетевого уровня (Forwarding Equivalence Class, FEC), каждый из которых идентифицируется определенной меткой. Значение метки уникально лишь для участка пути между соседними узлами сети MPLS, которые называются также маршрутизаторами, коммутирующими по меткам (Label Switching Router, LSR). Метка передается в составе любого пакета, причем способ ее привязки к пакету зависит от используемой технологии канального уровня.
Маршрутизатор LSR получает топологическую информацию о сети, участвуя в работе алгоритма маршрутизации – OSPF, BGP, IS-IS. Затем он начинает взаимодействовать с соседними маршрутизаторами, распределяя метки, которые в дальнейшем будут применяться для коммутации. Обмен метками может производиться с помощью как специального протокола распределения меток (Label Distribution Protocol, LDP), так и модифицированных версий других протоколов сигнализации в сети (например, незначительно видоизмененных протоколов маршрутизации, резервирования ресурсов RSVP и др.).
Распределение меток между LSR приводит к установлению внутри домена MPLS путей с коммутацией по меткам (Label Switching Path, LSP). Каждый маршрутизатор LSR содержит таблицу, которая ставит в соответствие паре «входной интерфейс, входная метка» тройку «префикс адреса получателя, выходной интерфейс, выходная метка». Получая пакет, LSR по номеру интерфейса, на который пришел пакет, и по значению привязанной к пакету метки определяет для него выходной интерфейс. (Значение префикса применяется лишь для построения таблицы и в самом процессе коммутации не используется.) Старое значение метки заменяется новым, содержавшимся в поле «выходная метка» таблицы, и пакет отправляется к следующему устройству на пути LSP.
Вся операция требует лишь одноразовой идентификации значений полей в одной строке таблицы. Это занимает гораздо меньше времени, чем сравнение IP-адреса отправителя с наиболее длинным адресным префиксом в таблице маршрутизации, которое используется при традиционной маршрутизации.
|
Рис. 7.1. Схема коммутации MPLS |
Сеть MPLS делится на две функционально различные области – ядро и граничную область (рис.7.1). Ядро образуют устройства, минимальным требованием к которым является поддержка MPLS и участие в процессе маршрутизации трафика для того протокола, который коммутируется с помощью MPLS. Маршрутизаторы ядра занимаются только коммутацией. Все функции классификации пакетов по различным FEC, а также реализацию таких дополнительных сервисов, как фильтрация, явная маршрутизация, выравнивание нагрузки и управление трафиком, берут на себя граничные LSR. В результате интенсивные вычисления приходятся на граничную область, а высокопроизводительная коммутация выполняется в ядре, что позволяет оптимизировать конфигурацию устройств MPLS в зависимости от их местоположения в сети.
Таким образом, главная особенность MPLS – отделение процесса коммутации пакета от анализа IP-адресов в его заголовке, что открывает ряд привлекательных возможностей. Очевидным следствием описанного подхода является тот факт, что очередной сегмент LSP может не совпадать с очередным сегментом маршрута, который был бы выбран при традиционной маршрутизации.
Поскольку на установление соответствия пакетов определенным классам FEC могут влиять не только IP-адреса, но и другие параметры, нетрудно реализовать, например, назначение различных LSP пакетам, относящимся к различным потокам RSVP или имеющим разные приоритеты обслуживания. Конечно, подобный сценарий удается осуществить и в обычных маршрутизируемых сетях, но решение на базе MPLS оказывается проще и к тому же гораздо лучше масштабируется.
Каждый из классов FEC обрабатывается отдельно от остальных – не только потому, что для него строится свой путь LSP, но и в смысле доступа к общим ресурсам (полосе пропускания канала и буферному пространству). В результате технология MPLS позволяет очень эффективно поддерживать требуемое качество обслуживания, не нарушая предоставленных пользователю гарантий. Применение в LSR таких механизмов управления буферизацией и очередями, как WRED, WFQ или CBWFQ, дает возможность оператору сети MPLS контролировать распределение ресурсов и изолировать трафик отдельных пользователей.
Использование явно задаваемого маршрута в сети MPLS свободно от недостатков стандартной IP-маршрутизации от источника, поскольку вся информация о маршруте содержится в метке и пакету не требуется нести адреса промежуточных узлов, что улучшает управление распределением нагрузки в сети.
- О.В. Махровский «Технологии мультисервисных сетей связи» (тмсс)
- Содержание
- Глава 2 посвящена рассмотрению многоуровневой архитектуры мультисервисных сетей связи.
- Глава 1. Понятие мсс и ее базовые принципы
- 1.1. Понятие и основные определения мсс
- 1.2. Требования к мсс как сетям связи нового поколения
- 1.3. Особенности инфокоммуникационных услуг
- Глава 2. Архитектура мультисервисных сетей связи
- Глава 3. Услуги и службы мультисервисных сетей
- 3.1. Классификация служб и услуг мультисервисных сетей Дадим некоторые основные понятия и определения
- 3.2. Коммуникационные службы мсс
- 3.3. Информационные службы мсс
- 3.4. Операторы на рынке перспективных инфокоммуникационных услуг
- Vpn как услуга
- Услуги Triple Play
- Глава 4. Протоколы мультисервисных сетей связи
- 4.1. Основные типы протоколов
- 4.2. Протокол н.323
- 4.3. Протокол sip
- 4.4. Протокол mgcp
- 4.5. Протокол megaco/h.248
- 4.6. Протокол sigtran
- 4.7. Протокол передачи информации с управлением потоком
- Sctp для megaco
- Глава 5. Типы оборудования в мультисервисных сетях
- 5.1. Гибкий (программный) коммутатор Softswitch
- 5.1.1. Эталонная архитектура Softswitch
- Транспортная плоскость
- Плоскость управления обслуживанием вызова и сигнализации
- Плоскость услуг и приложений
- 5.1.2. Основные характеристики Softswitch
- Поддерживаемые протоколы
- Поддерживаемые интерфейсы
- 5.2. Шлюзы
- 5.2.1. Основные характеристики шлюзов Емкость
- Производительность
- Поддерживаемые интерфейсы
- 5.3. Терминальное оборудование
- 5.4. Сервер приложений
- Глава 6. Ims-единая платформа для доставки услуг в мсс
- 6.1. Способы предоставления услуг
- Некоторые протоколы, подсистемы, стандарты, применяемые в современных сетях сотовой подвижной связи
- Обозначение и функции элементов ip Multimedia Core Network
- 6.2. Конвергенция услуг и сетей
- 6.3. Универсальная технология для всех услуг
- 6.4. Аспекты стандартизации
- 6.5. Поступательное развитие сетей
- Стандартизация применяемых решений
- Глава 7. Технология mpls - фундамент для инфраструктуры мультисервисных сетей следующего поколения
- 7.2. Принцип коммутации
- 7.3. Элементы архитектуры Метки и способы маркировки
- Стек меток
- Компоненты коммутируемого маршрута
- Привязка и распределение меток
- 7.4. Построение коммутируемого маршрута
- 7.5. Перспективы технологии mpls
- 7.6. Краткий глоссарий терминов по технологии mpls
- 8.1. Понятие «качество обслуживания»
- 8.2. Резервирование ресурсов
- 8.3. Дифференцированные услуги
- 8.4. Коммутация по меткам
- 8.5. Пути реализации качества обслуживания
- Глава 9. Технологии сетей широкополосного абонентского доступа
- 9.1. Основные технологии доступа
- 9.1.1. Беспроводная технология
- Третьим положительным фактором технологии беспроводной связи является значительно более короткое время ввода системы в действие по сравнению с кабельной инфраструктурой.
- 9.1.2. Спутник для доступа в мсс
- 9.1.3. Семейство технологий хDsl
- 9.2. Сетевая архитектура
- Глава 10. Управление и эксплуатационно-техническое обслуживание мсс
- 10.1. Система управления, построенная на базе snmp
- 10.2. Система управления на базе архитектуры tmn
- 10.3. Суэто для мультисервисных сетей
- Глава 11. Обеспечение информационной безопасности в мультисервисных сетях
- 11.1. Рынок информационной безопасности
- 11. 2. Архитектура информационной безопасности
- 11.3. Угрозы безопасности мсс
- 11.4. Классификация угроз нсд в мсс
- Цели (объекты) угроз
- Пути проникновения действия угроз
- 11.5. От каких угроз иб следует защищать мсс
- 11.6. Пять наиболее важных технологий в области информационной безопасности
- 11.6.1. Usb-токены для аутентификации
- 11.6.2. Встроенные средства биометрии
- 11.6.3. Жесткие диски со встроенной возможностью шифрования
- 11.6.4. Браузеры и приложения со встроенными функциями защиты
- 11.6.5. Защита для мобильных устройств
- 11.7. Перспективы информационной безопасности
- Глава 12. Примеры построения мультисервисных сетей связи в Российской Федерации
- 12.1. Мсс нового поколения от основных операторов связи
- 12.2. Мсс в регионах России
- 12.2.1. Мультисервисная сеть птт
- 12.2.2. Сеть нового поколения в Новокузнецке
- 12.2.3. Мультимедийная сеть нового поколения в Якутии
- 12.2.4. Мультисервисная сеть в Ханты-Мансийском округе
- Махровский