Шумы приемников оптического излучения.
Фотодиоды обычно характеризуются следующими основными параметрами:
токовой чувствительностью S, квантовой эффективностью ;
предельной частотой, т.е. частотой гармонической модуляции падающего на ФД модулированного по интенсивности излучения, при которой чувствительность ФД уменьшается до 0,707 чувствительности при немодулированном излучении; отметим, что предельная частота численно равна ширине полосы пропускания фотодиода ;
быстродействием, под которым понимается время нарастания или время слада фототока при воздействии на ФД импульса оптического излучения W (t) достаточно большой длительности (рис. 9).
Время спада импульса тока и время его нарастания определяются длительностью переднего и заднего фронтов между значениями 0,1 и 0,9 установившегося значения фототока . В совокупности время спада и время нарастания называются временем отклика, т.е. временем, необходимым для преобразования мощности излучения в электрический ток. Быстродействие оценивается максимальным значением одной из составляющих времени отклика (обычно это время нарастания). Между временем нарастания и шириной полосы пропускания существует зависимость вида:
.
Для ЛФД увеличение коэффициента усиления сопровождается уменьшением быстродействия. Поэтому параметром, характеризующим быстродействие ЛФД является его добротность, под которой понимается произведение коэффициента умножения (усиления) М на ширину полосы пропускания , численно равной предельной частоте.
Как функциональные элементы и лавинные фотодиоды могут быть представлены в виде обобщенной эквивалентной схемы (рис. 10), где приняты следующие обозначения: - фототок; - дифференциальное сопротивление обратно смещенного перехода фотодиода; обычно это сопротивление настолько велико, что его шунтирующим действием можно пренебречь; - внутреннее сопротивление диода, состоящее из сопротивления не обедненной зоны диода, контактного сопротивления и общего сопротивления, связанного с удельным сопротивлением поверхностного слоя, величина этого сопротивления не превышает нескольких десятков Ом; - емкость обратно смещенного перехода, зависящая от его площади; - сопротивление нагрузки ФД (входное сопротивление предварительного усилителя). Для большинства случаев анализа эквивалентную схему ФД можно представлять генератором тока 1Ф и шунтируемого емкостью . Можно показать, что для эквивалентной схемы (см. рис. 10) ширина полосы пропускания или предельная частота равна
,
здесь - сопротивление нагрузки ФД (как правило, входное сопротивление предварительного малошумящего усилителя фототока).
В состав тока на выходе схемы (см. рис.10) входят: фототок , темновой ток , а также токи шумов различного происхождения, являющиеся естественным ограничением чувствительности фотодиодов. Значения этих токов являются одним из ключевых параметров приемников оптического излучения и оцениваются среднеквадратическими величинами соответствующих токов.
Среднеквадратическое значение тока фотодиода определяется следующей формулой:
,
здесь - мощность оптического сигнала, поступающего на вход фотодетектора - фотодиода; S - чувствительность фотодиода на соответствующей рабочей длине волны оптического излучения; М- коэффициент лавинного умножения (усиления) ЛФД (для - фотодиода М = 1); - средний ток фотодиода, генерируемый оптическим излучением.
Важной составляющей шумов фотодиодов являются дробовые шумы, обусловленные дискретной природой фотонов и генерируемых ими пар «электрон-дырка». Фототок не является непрерывным и однородным потоком, а представляет поток отдельных дискретных электронов. Фототок флуктуирует в зависимости от того, насколько много или мало пар «электрон-дырка» возникает в данный момент времени. Дробовые шумы присутствуют и тогда, когда свет не падает на фотодиод. Даже в отсутствие оптического сигнала малые флуктуации фототока генерируются за счет темнового тока и температурных колебаний, причем его значение увеличивается приблизительно на 10 % при росте температуры на 1°С. Типичные значения тока дробовых шумов составляют 22...25 нА при 25°С.
Среднеквадратическое значение тока дробовых шумов (дробный шум) фотодиода равно
где q - заряд электрона; F (М) - коэффициент избыточного шума лавинного умножения (усиления), учитывающий увеличение дробовых шумов ЛФД из-за нерегулярного характера процесса умножения; для некоторых типов ЛФД коэффициент F(M) вблизи напряжения пробоя может быть представлен в форме
,
где показатель степени х для кремниевых ЛФД лежит в пределах 0,2. ..0,5 и для германиевых –
0,9...1, для ЛФД на основе гибридного соединения вида InGaAs - 0,7...0,8; - ширина полосы пропускания фотодиода.
Среднеквадратическое значение темнового тока определяется по формуле
,
здесь - среднее значение темнового тока; его величина для кремниевых - фотодиодов лежит в пределах (1...8)10-9 А, а для германиевых - на два порядка выше. Темновой ток возрастает примерно на 10 % с ростом температуры на 1°С.
Помимо дробовых шумов и шумов темнового тока в приемниках оптического излучения следует учитывать тепловые шумы (или шумы Джонсона-Найквиста), обусловленных флуктуациями отдельных электронов в проводнике, создающих на его концах напряжение случайного характера. Электроны в пространстве между электродами фотодиода ведут себя непостоянно. Их тепловая энергия позволяет им случайным образом смещаться. В каждый момент времени суммарный поток случайного движения электронов может быть направлен к одному либо к другому электроду. Таким образом, появляется постоянно меняющийся случайный ток. Он накладывается на полезный сигнал и изменяет его. Среднеквадратическое значение тока тепловых шумов определяется выражением
,
где = 1,38 х 10-23 Дж/К - постоянная Больцмана; Т - абсолютная температура по шкале Кельвина; - ширина полосы пропускания фотодиода (фотодетектора); - сопротивление нагрузки (см. рис. 10).
Среднеквадратическое значение суммарных шумов (полного шума) на выходе фотодетектора определяется суммой вида
.
Помехозащищенность полезного электрического сигнала от полного шума на выходе фотодетектора определяется отношением сигнал - шум, которое можно представить в виде
или
где - мощность фототока на единичном сопротивлении нагрузки = 1 Ом; - полная мощность шумов на единичном сопротивлении нагрузки = 1 Ом.
Шумы на выходе фотодетектора при передаче цифровой информации порождают ошибки, и в этом случае интегральной оценкой качества передачи является вероятность ошибки.
Одним из основных параметров приемников оптического излучения является его чувствительность, под которой понимается минимальная обнаруживаемая - детектируемая мощность (МДМ) оптического сигнала, обеспечивающая заданные значения отношения сигнал -шум или вероятности ошибки.
В идеальном случае максимальная чувствительность приемника оптического излучения достигается, если минимальный обнаруживаемый сигнал не ограничивается параметрами приемника, а изменяется только в результате флуктуации тока сигнала. При таком допущении естественным ограничением чувствительности является темновой ток. Дробовые шумы определяются оптическим сигналом, а тепловые - в основном, сопротивлением нагрузки (входным сопротивлением предварительного усилителя), а потому минимальное значение фототока будет равно темновому току. Следовательно, МДМ будет равна
.
Напомним, что здесь S - чувствительность фотодиода на соответствующей длине волны.
Мерой минимально детектируемой мощности оптического сигнала является эквивалентная мощность шума (ЭМШ), определяемая как оптическая мощность, необходимая для получения фототока, соответствующего среднеквадратическому значению шумового тока в единичной полосе частот, т.е.
.
Определить ЭМШ на конкретной длине волны - фотодиода можно следующим образом. Представим мощность оптического сигнала на входе фотодетектора для конкретных средних значений фототока и коэффициента квантовой эффективности в следующей форме:
,
здесь - скорость света; - постоянная Планка и q - заряд электрона. При определении МДМ полагаем, что фототек равен . Подставляя это значение при = 1 Гц, получим
.
Чувствительность к обнаружению при детектировании монохроматического излучения (каким можно считать излучение лазера и большинства широко применяемых светоизлучающих диодов) равна .
- Основы построения телекоммуникационных систем и сетей
- Предисловие
- Введение
- Лекция 1
- Основные понятия и определения
- Основные понятия и определения. Классификация систем электросвязи
- Вопросы и задачи для самоконтроля
- Лекция 2 Первичные сигналы электросвязи Первичные сигналы электросвязи и их физические характеристики
- Сигналы передачи данных и телеграфии
- Вопросы и задачи для самоконтроля
- Лекция 3 Каналы передачи Каналы передачи, их классификация и основные характеристики
- Типовые каналы передачи
- Вопросы и задачи для самоконтроля
- Лекция 4 Двусторонние каналы Построение двусторонних каналов
- Развязывающие устройства, требования к ним и классификация
- Анализ резисторной дифференциальной системы
- Лекция 5 Трансформаторная дифференциальная система Анализ трансформаторной дифференциальной системы
- Определение условия непропускания тдс от полюсов 4-4 к полюсам 2-2
- Определение входных сопротивлений тдс
- Определение затуханий уравновешенной тдс в направлениях передачи
- Анализ неуравновешенной трансформаторной дифференциальной системы
- Сравнение трансформаторной и резисторной дифференциальных систем
- Лекция 6 Двусторонний канал как замкнутая система Устойчивость двусторонних каналов
- Устойчивость телефонного канала
- Искажения от обратной связи
- Вопросы и задачи для самоконтроля к лекциям 4-6
- Лекция 7 Общие принципы построения многоканальных систем передачи
- Обобщенная структурная схема многоканальной системы передачи
- Методы разделения канальных сигналов
- Взаимные помехи между каналами
- Вопросы и задачи для самоконтроля
- Лекция 8 Принципы формирования канальных сигналов в системе передачи с частотным разделением каналов
- Формирование канальных сигналов
- Способы передачи амплитудно-модулированных сигналов
- Квадратурные искажения при передаче амплитудно-модулированных сигналов
- Лекция 9 Методы формирования одной боковой полосы. Искажения в каналах и трактах сп с чрк
- Фильтровой метод формирования обп
- Многократное преобразование частоты
- Фазоразностный метод формирования обп
- Искажения в каналах и трактах систем передачи с частотным разделением каналов
- Вопросы, задачи и упражнения для самоконтроля к лекциям 8и9
- Лекция 10 Принципы построения и особенности работы систем передачи с временным разделением каналов Структурная схема системы передачи с временным разделением каналов
- Формирование канальных сигналов в системах передачи с временным разделением каналов
- Формирование канальных сигналов с помощью амплитудно-импульсной модуляции.
- Формирование канальных сигналов с помощью широтно-импульсной модуляции.
- Формирование канальных сигналов на основе фазоимпульсной модуляции.
- Выбор вида импульсной модуляции для построения систем передачи с временным разделением каналов
- Помехоустойчивость амплитудно-импульсной модуляции.
- Выбор вида импульсной модуляции для построения систем передачи с временным разделением каналов
- Помехоустойчивость амплитудно-импульсной модуляции.
- Переходные влияния между каналами систем передачи с временным разделением каналов
- Оценка переходных помех 1-го рода.
- Оценка переходных помех 2-го рода.
- Обобщенная структурная схема системы передачи с временным разделением каналов на основе фазоимпульсной модуляции
- Вопросы, задачи и упражнения для самоконтроля
- Лекция 11 Общие принципы формирования и передачи сигналов в цифровых системах передачи Постановка задачи
- Квантование сигналов по уровню
- Оценка шумов квантования Оценка шумов при равномерном квантовании.
- Гармонический сигнал.
- Речевой сигнал.
- Речевой сигнал, поступающий от разных источников.
- Многоканальный групповой телефонный сигнал.
- Телевизионный сигнал.
- Оценка шумов квантования при неравномерном квантовании.
- Кодирование квантованных сигналов
- Обобщенная структурная схема цифровой системы передачи
- Виды синхронизации в цифровых системах передачи
- Принципы регенерации цифровых сигналов
- Линейное кодирование в цсп
- Лекция 12
- Разностные методы кодирования.
- Иерархия цифровых систем передачи
- Дифференциальная импульсно-кодовая модуляция
- Дифференциальная импульсно-кодовая модуляция как система с линейным предсказанием.
- Дельта-модуляция
- Иерархия цифровых систем передачи на основе импульсно-кодовой модуляции
- Объединение цифровых потоков в плезиохронной цифровой иерархии
- Объединение цифровых потоков в синхронной цифровой иерархии
- Вопросы и задачи для самоконтроля к лекциям 11 и 12
- Лекция 13 Общие принципы построения волоконно-оптических систем передачи Краткий исторический очерк
- Обобщенная структурная схема волоконно-оптической системы передачи
- Классификация волоконно-оптических систем передачи. Способы организации двусторонней связи на основе волоконно-оптических систем передачи. Способы уплотнения оптических кабелей
- Лекция 14 Основные узлы оптических систем передачи. Оптический линейный тракт Оптические передатчики
- Требования к источникам оптического излучения: их параметры и характеристики
- Оптические приемники
- Лавинные фотодиоды (лфд).
- Шумы приемников оптического излучения.
- Модуляторы оптической несущей
- Виды модуляции оптической несущей.
- Обобщенная структурная схема оптического линейного тракта
- Оптические усилители
- 1. Усилители Фабри - Перо.
- 2. Усилители на волокне, использующие бриллюэновское расстояние.
- 3. Усилители на волокне, использующие рамановское расстояние,
- 4. Полупроводниковые лазерные усилители (пплу)
- 5. Усилители на примесном волокне
- Вопросы и задачи для самоконтроля к лекциям 13 и 14
- Лекция 15 Общие принципы и особенности построения систем радиосвязи Основные понятия и определения. Классификация диапазонов радиочастот и радиоволн. Структура радиосистем передачи.
- Общие принципы организации радиосвязи. Классификация радиосистем передачи
- Особенности распространения радиоволн метрового -миллиметрового диапазонов
- Антенно-фидерные устройства
- Лекция 16 Построение радиорелейных и спутниковых линий передачи Основные понятия и определения. Классификация радиорелейных линий передачи. Принципы многоствольной передачи
- Виды модуляции, применяемые в радиорелейных и спутниковых системах передачи
- Вопросы для самоконтроля
- Лекция 17 Особенности построения оборудования радиорелейных и спутниковых систем передачи Принципы построения оборудования радиорелейных линий передачи прямой видимости
- Особенности построения тропосферных радиорелейных линий
- Передача сигналов телевизионного вещания по радиорелейным линиям
- Спутниковые системы передачи
- Много станционный доступ с разделением сигналов по форме.
- Принципы построения систем спутникового телевещания - ств
- Вопросы для самоконтроля
- Лекция 18 Общие принципы построения телекоммуникационных сетей Основные понятия и определения
- Назначение и состав сетей электросвязи
- Методы коммутации в сетях электросвязи
- Структура сетей электросвязи
- Принципы построения взаимоувязанной сети связи Российской Федерации
- Многоуровневый подход. Протоколы, интерфейс, стек протоколов
- Элементы теории телетрафика
- Вопросы для самоконтроля
- Лекция 19 Особенности построения вторичных телекоммуникационных сетей Состав и назначение сетей телефонной связи
- Структура вторичных цифровых сетей общего пользования.
- Состав и назначение телеграфных сетей
- Сети передачи данных
- Информационно-вычислительные сети. Сети эвм
- Телематические службы
- Цифровые сети интегрального обслуживания
- Вопросы для самоконтроля
- Лекция 20 Принципы построения сетей и систем радиосвязи Основные понятия и определения
- Основы построения систем сотовой связи
- Основы транкинговых систем радиосвязи
- Основы построения систем беспроводного абонентского радиодоступа
- Технико-экономические аспекты системы беспроводного абонентского радиодоступа
- Вопросы для самоконтроля,
- Основы построения телекоммуникационных систем и сетей