2.6. Передаточная функция
Наряду с обыкновенными дифференциальными уравнениями в теории автоматического управления используются различные их преобразования. Для линейных систем эти уравнения удобнее представлять в символической форме с применением так называемого оператора дифференцирования
р=d/ dt
что позволяет записывать дифференциальные уравнения как алгебраические и вводить новую динамическую характеристику -передаточную функцию. Этот способ был предложен английским ученым Хевисайдом в 1895 г., позднее он был строго обоснован аппаратом интегральных преобразований Лапласа и Карсона [4] в предположении нулевых начальных условий.
Р ассмотрим этот переход для многоканальных систем общего вида
Ч аще всего передаточные функции применяются для описания одноканальных систем вида (2.5)
С использованием оператора дифференцирования р запишем уравнение (2.28) в символической форме и найдем передаточную функцию как отношение выходной величины к входной:
Передаточную матрицу (передаточную функцию) можно также определить с помощью изображений Лапласа или Карсона - Хеви-сайда. Если подвергнуть одному из этих преобразований обе части дифференциального уравнения и найти соотношения между входными и выходными величинами при нулевых начальных условиях, то получим ту же самую передаточную матрицу (2.24) или функцию (2.29).
Все динамические характеристики объекта взаимосвязаны: получив одну из них, можно определить все остальные. Мы рассмотрели переход от дифференциальных уравнений к передаточным функциям с помощью оператора дифференцирования р. Используя этот оператор, несложно перейти от передаточной функции к символической форме записи дифференциального уравнения, а затем к стандартному описанию объекта в форме (2.3) или (2.5).
Обсудим теперь взаимосвязь между переходными характеристиками и передаточной функцией. С этой целью запишем выражение для выходной переменной объекта через импульсную переходную функцию в соответствии с (2.8)
Подвергнем его преобразованиям Лапласа [2,9,12]
Определить передаточную функцию двигателя постоянного тока с независимым возбуждением (см. рис. 2.2).
Дифференциальное уравнение двигателя получено в примере 2.4 и имеет вид
Будем полагать, что возмущающее воздействие отсутствует, т. е. М = 0. Запишем это уравнение в символической форме с помощью оператора дифференцирования р
или, рассматривая его как алгебраическое,
Определим теперь передаточную функцию двигателя постоянного тока с независимым возбуждением
Как видим, она не содержит нулей и имеет два полюса, которые в зависимости от численных значений параметров Тя и Гм могут быть вещественными или комплексно-сопряженными
- Предмет теории автоматического управления
- Основные понятия и определения
- Основные понятия и определения
- 1.3. Примеры систем управления
- Динамические характеристики линейных систем
- Дифференциальные уравнения
- 2.4. Импульсная переходная функция
- 2.6. Передаточная функция
- 2.7. Модальные характеристики
- 2.8. Частотные характеристики
- Заключение
- 3. Структурный метод
- 3.1. Типовые динамические звенья
- 3.1.1. Пропорциональное (усилительное) звено
- 3.1.2. Дифференцирующее звено