logo
ТАУ / Лекции

Критерии устойчивости системы Общие сведения

Признаки, по которым можно судить об устойчивости системы автоматического управления без нахождения корней характеристического уравнения, в совокупности с правилами применения этих признаков, называются критериями устойчивости системы автоматического управления. Поскольку устойчивость системы определяется знаком вещественной части корней характеристического уравнения системы, то критерии устойчивости позволяют определить этот знак без нахождения самих корней.

Применение критериев устойчивости упрощает задачу исследования устойчивости системы, а также позволяет выявить причину её неустойчивости и наметить пути для устранения неустойчивости системы (для приведения системы к устойчивости).

Все критерии устойчивости делятся на алгебраические критерии, основанные на исследовании коэффициентов характеристического уравнения, ичастотные критерии, основанные на исследовании амплитудно-фазовых частотных характеристик системы.

В настоящее время известны алгебраические критерии А.И. Вышнеградского, Рауса и Гурвица. Критерий Вышнеградского и так называемая диаграмма Вышнеградского справедливы для систем регулирования, описываемых линейным дифференциальным уравнением третьего порядка. Критерий Рауса представляет собой алгоритм исследования коэффициентов характеристического уравнения. Наиболее распространен и удобен алгебраический критерий Гурвица. Критерии Рауса и Гурвица применимы для дифференциальных уравнений любого порядка.

Из частотных критериев получили распространение критерии А.В. Михайлова и Найквиста.