8.5. Пути реализации качества обслуживания
Рассмотренные протоколы QoS не исключают, а дополняют друг друга, поэтому во многих случаях применяются совместно (особенно когда требуется сквозное качество сервиса в среде, состоящей из сетей нескольких провайдеров). Комбинированный подход позволяет реализовать требуемую схему QoS на всем пути передачи трафика от отправителя к получателю. Он же обеспечивает поддержку QoS «по вертикали» (от канального до прикладного уровня модели OSI), без которой механизм приоритизации будет нарушен. В поддержании сквозной схемы качества обслуживания немаловажную роль играет наличие средств QoS в локальной сети. Рассмотрим вкратце результаты использования протоколов QoS в различных сочетаниях.
RSVP и DiffServ. Технология DiffServ может рассматриваться в качестве удачного дополения к RSVP, поскольку она обеспечивает маркировку и приоритизацию трафика, для которого RSVP выделяет необходимые ресурсы. Так как протокол RSVP сложнее DiffServ и создает значительную нагрузку на маршрутизаторы, его применение в магистральных сетях стоит ограничить, воспользовавшись вместо этого возможностями DiffServ. Другими словами, RSVP-запросы должны генерировать подключенные к сети компьютеры, определяя необходимый уровень обслуживания, а граничные маршрутизаторы — преобразовывать требования о выделении ресурсов в агрегаторы поведения, которые задаются кодовыми словами DSCP.
MPLS и RSVP. Один из способов реализовать данную комбинацию — использовать в среде RSVP явное указание маршрутов следования пакетов, снабженных MPLS-метками. Фактически составленные из этих пакетов потоки будут передаваться по виртуальным каналам, образованным поддерживающими MPLS маршрутизаторами. Но и при отсутствии явно заданных маршрутов MPLS-метки могут присваиваться в соответствии с RSVP-спецификациями потоков. В любом случае применение меток существенно упрощает задачу поддержки RSVP маршрутизаторами, которым уже не нужно обрабатывать информацию о состояниях RSVP.
MPLS for DiffServ. Схожесть этих технологий заставляет предположить, что транспортировка трафика DiffServ в среде MPLS не вызовет больших затруднений. Тем не менее поддержка DiffServ на уровне отдельных соединений требует резервирования в каждом из маршрутизаторов сети MPLS ресурсов для передачи трафика DiffServ отдельных классов и реализации схемы присвоения меток. Кроме того, с каждым пакетом придется сопоставить один из трех уровней потерь, предусмотренных типом локального поведения AF.
Завершая рассмотрение совместного использования протоколов QoS, нельзя не упомянуть об одной принципиальной проблеме. Как уже говорилось, достижение в сетях с поддержкой DiffServ и MPLS более высокого уровня сервиса, чем простой best effort, возможно лишь в том случае, когда интенсивность входящего трафика не превышает пропускной способности формируемых виртуальных каналов. Между тем технологии DiffServ и MPLS не предусматривают механизмов предварительного вычисления полосы пропускания, которую потребуется зарезервировать. Эту задачу способен решить только RSVP.
Таким образом, без самого сложного из протоколов QoS не обойтись. Причем он нужен для выделения ресурсов не только потокам, генерируемым отдельными приложениями, но и общим классам трафика, в которые объединяются потоки индивидуальных сеансов.
Для реализации сквозной схемы QoS между приложениями, общающимися друг с другом через глобальную мультисервисную сеть, необходимо организовать поддержку QoS в соответствующих локальных сетях и на различных уровнях эталонной модели OSI. Смысл последнего требования станет очевидным, если учесть, например, что средства DiffServ функционируют на третьем уровне, а RSVP — еще выше.
Механизм маркировки и приоритизации пакетов в коммутируемых сетях Ethernet определен хорошо известными стандартами IEEE 802.1p/Q и 802.1D. Одним из вариантов взаимодействия сетевых технологий второго уровня (разделяемый и коммутируемый варианты Ethernet, Token Ring, FDDI) с вышележащими протоколами и сервисами QoS является сигнальный протокол Subnet Bandwidth Management (SBM), предложенный консорциумом IETF. Он обеспечивает координацию работы коммутаторов и других сетевых узлов, а также кондиционирование трафика с учетом требований протоколов QoS для глобальных сетей.
Функционирование SBM не зависит от протокола QoS, но само по себе реализуется через генерацию запросов (сначала отправителем, а затем получателем) и тем напоминает работу протокола RSVP. Отличия же связаны со схемой классификации трафика, принятой в ЛС. В частности, при использовании SBM маршрутизаторы глобальной сети, получая сообщения PATH или RESV, должны запоминать один из восьми уровней приоритета, которые задаются соответствующим значением в заголовке 802.1Q. Точные параметры соответствующих им классов обслуживания могут меняться, однако по умолчанию принято, например, что нулевой приоритет соответствует дисциплине best effort, четвертый — обработке трафика, чувствительного к задержкам (без установления порога), а шестой — передаче трафика с задержкой не более 10 мс. Последний, седьмой уровень отведен для пересылки управляющей информации.
Контрольные вопросы
1. Что такое качество обслуживания QoSв МСС?
2. Как обеспечивается QoSв МСС?
- О.В. Махровский «Технологии мультисервисных сетей связи» (тмсс)
- Содержание
- Глава 2 посвящена рассмотрению многоуровневой архитектуры мультисервисных сетей связи.
- Глава 1. Понятие мсс и ее базовые принципы
- 1.1. Понятие и основные определения мсс
- 1.2. Требования к мсс как сетям связи нового поколения
- 1.3. Особенности инфокоммуникационных услуг
- Глава 2. Архитектура мультисервисных сетей связи
- Глава 3. Услуги и службы мультисервисных сетей
- 3.1. Классификация служб и услуг мультисервисных сетей Дадим некоторые основные понятия и определения
- 3.2. Коммуникационные службы мсс
- 3.3. Информационные службы мсс
- 3.4. Операторы на рынке перспективных инфокоммуникационных услуг
- Vpn как услуга
- Услуги Triple Play
- Глава 4. Протоколы мультисервисных сетей связи
- 4.1. Основные типы протоколов
- 4.2. Протокол н.323
- 4.3. Протокол sip
- 4.4. Протокол mgcp
- 4.5. Протокол megaco/h.248
- 4.6. Протокол sigtran
- 4.7. Протокол передачи информации с управлением потоком
- Sctp для megaco
- Глава 5. Типы оборудования в мультисервисных сетях
- 5.1. Гибкий (программный) коммутатор Softswitch
- 5.1.1. Эталонная архитектура Softswitch
- Транспортная плоскость
- Плоскость управления обслуживанием вызова и сигнализации
- Плоскость услуг и приложений
- 5.1.2. Основные характеристики Softswitch
- Поддерживаемые протоколы
- Поддерживаемые интерфейсы
- 5.2. Шлюзы
- 5.2.1. Основные характеристики шлюзов Емкость
- Производительность
- Поддерживаемые интерфейсы
- 5.3. Терминальное оборудование
- 5.4. Сервер приложений
- Глава 6. Ims-единая платформа для доставки услуг в мсс
- 6.1. Способы предоставления услуг
- Некоторые протоколы, подсистемы, стандарты, применяемые в современных сетях сотовой подвижной связи
- Обозначение и функции элементов ip Multimedia Core Network
- 6.2. Конвергенция услуг и сетей
- 6.3. Универсальная технология для всех услуг
- 6.4. Аспекты стандартизации
- 6.5. Поступательное развитие сетей
- Стандартизация применяемых решений
- Глава 7. Технология mpls - фундамент для инфраструктуры мультисервисных сетей следующего поколения
- 7.2. Принцип коммутации
- 7.3. Элементы архитектуры Метки и способы маркировки
- Стек меток
- Компоненты коммутируемого маршрута
- Привязка и распределение меток
- 7.4. Построение коммутируемого маршрута
- 7.5. Перспективы технологии mpls
- 7.6. Краткий глоссарий терминов по технологии mpls
- 8.1. Понятие «качество обслуживания»
- 8.2. Резервирование ресурсов
- 8.3. Дифференцированные услуги
- 8.4. Коммутация по меткам
- 8.5. Пути реализации качества обслуживания
- Глава 9. Технологии сетей широкополосного абонентского доступа
- 9.1. Основные технологии доступа
- 9.1.1. Беспроводная технология
- Третьим положительным фактором технологии беспроводной связи является значительно более короткое время ввода системы в действие по сравнению с кабельной инфраструктурой.
- 9.1.2. Спутник для доступа в мсс
- 9.1.3. Семейство технологий хDsl
- 9.2. Сетевая архитектура
- Глава 10. Управление и эксплуатационно-техническое обслуживание мсс
- 10.1. Система управления, построенная на базе snmp
- 10.2. Система управления на базе архитектуры tmn
- 10.3. Суэто для мультисервисных сетей
- Глава 11. Обеспечение информационной безопасности в мультисервисных сетях
- 11.1. Рынок информационной безопасности
- 11. 2. Архитектура информационной безопасности
- 11.3. Угрозы безопасности мсс
- 11.4. Классификация угроз нсд в мсс
- Цели (объекты) угроз
- Пути проникновения действия угроз
- 11.5. От каких угроз иб следует защищать мсс
- 11.6. Пять наиболее важных технологий в области информационной безопасности
- 11.6.1. Usb-токены для аутентификации
- 11.6.2. Встроенные средства биометрии
- 11.6.3. Жесткие диски со встроенной возможностью шифрования
- 11.6.4. Браузеры и приложения со встроенными функциями защиты
- 11.6.5. Защита для мобильных устройств
- 11.7. Перспективы информационной безопасности
- Глава 12. Примеры построения мультисервисных сетей связи в Российской Федерации
- 12.1. Мсс нового поколения от основных операторов связи
- 12.2. Мсс в регионах России
- 12.2.1. Мультисервисная сеть птт
- 12.2.2. Сеть нового поколения в Новокузнецке
- 12.2.3. Мультимедийная сеть нового поколения в Якутии
- 12.2.4. Мультисервисная сеть в Ханты-Мансийском округе
- Махровский