54. Введение связей по возмущению
В случае, когда возмущающее воздействие можно измерить с помощью датчика, то за счет введения связи по возмущению можно добиться даже абсолютной инвариантности системы к возмущающему воздействию, не затрагивая при этом условия устойчивости.
Структурная сх. системы с обратной связью и со связью по возмущению, описываемой передаточной функцией W3(p), представлена на рис. 4. Разумеется, передаточная функция связи по возмущению отражает так же динамические свойства датчика, с помощью к. измеряется возмущающее воздействие. Рис. 4 Здесь W1f(p) - передаточная функция объекта по возмущению,
W1(p) – - передаточная функция объекта по управлению.
ПФ по возмущению Фf(р) для системы на рис. 4, можно найти, положив задающее воздействие равным нулю, т.е. положив v(p)=0, и используя принцип суперпозиции, в силу которого реакцию системы можно рассматривать как сумму реакций на каждый из сигналов f’(p)=W3(p)f(p) и f’’(p)=W1f(p)f(p), взятых в отдельности. Отсюда
.
Следовательно,
. (64)
В соответствии с условием (49) абсолютная инвариантность к возмущающему воздействию обеспечивается, если Фf(p)=0. Приравнивая к нулю выражение (64), находим передаточную функцию связи по возмущению W3(p)=-W1f(p)/W1(p),(65) обеспечивающую выполнение условия абсолютной инвариантности системы к возмущающему воздействию.
С физической точки зрения нулевую установившуюся ошибку по возмущению, получаемую при этом для каждого вида возмущающего воздействия, можно объяснить следующим образом. При передаточной функции W3(p), описываемой выражением (65), возмущающее воздействие, пройдя последовательно через связь по возмущению и часть объекта управления с передаточной функцией W1(p), компенсирует сигнал f’’(p), приложенный к выходу объекта управления и порожденный непосредственным, а не искусственным влиянием возмущения на объект. Во многих случаях условие (65) можно реализовать, так как знаменатель передаточных функций объекта управления W1f(p)=K1f(p)/D1(p), W1(p)=K1(p)/D1(p) оказывается одинаковым и равным D1(p). При этом из (65) получаем передаточную функцию связи по возмущению
W3(p)=-K1f(p)/K1(p), (66) которая обычно физически осуществима, т.е. степень K1(p) не ниже степени K1f(p), так что degK1≥degK1f.
Если условие физической осуществимости связи по возмущению, описываемой (65), не выполняется, можно обычно реализовать селективную инвариантность к возмущающему воздействию. В этой связи отметим, что за счет связи по возмущению часто добиваются выполнения условий астатизма системы, т.е. условия абсолютной селективной инвариантности к постоянному возмущающему воздействию. Так как изображение постоянного возмущающего воздействия f(t)=b0=const равно f(p)=b0/p, то в соответствии с (43) С’0=0 условие астатизма по отношению к возмущающему воздействию можно записать в этом случае как
C’0=-Фf(0)=0.
Полагая в (64) р=0 и приравнивая затем полученное выражение к нулю, находим коэффициент усиления связи по возмущению k3=W3(0)=-W1f(0)/W1(0),
гарантирующий астатизм системы по возмущению для любых значений b0.
Недостатком приведенной на рис. 4 структурной схемы с точки зрения реализаций условий инвариантности является зависимость передаточной функции W3(p) от свойств объекта. Вариации параметров передаточной функции объекта управления относительно номинальной модели W1(p), принятой при расчете передаточной функции W3(p), приведут к нарушению как абсолютной, так и селективной инвариантности, хотя при соответствующем выборе передаточной функции обратной связи W2(p) можно в значительной степени ослабить чувствительность системы к изменению параметров объекта управления. Упомянутые вариации параметров обусловлены неточностью, неопределенностью и изменчивостью математической модели объекта управления.
- 4,Ошибка воспроизведения.
- 5. Основные принципы управления. Разомкнутые системы. Управление с внутренней моделью.
- 6. Селективная инвариантность до при гармоническом задающем воздействии.
- Вопрос 7. Описание звеньев сау. Уравнение звена в изображениях и передаточная функция.
- Операторная (символическая) форма записи уравнения элемента
- 8 Чувствительность систем управления к изменению параметров
- 10. Понятие об инвариантных системах
- 12.Понятие о качестве сау. Точность работы сау в установившемся режиме.
- 1. Понятие о качестве системы
- 2. Точность работы сау в установившемся режиме.
- 13 Передаточные функции сау с прямой и обратой связью
- 14. Логарифмические частотные характеристики основных сомножителей передаточной функции
- 15. Реакция линейной замкнутой системы на внешние воздействия. Ду замкнутой системы. Пример
- 16. Вычисление коэффициентов ошибок с помощью передаточной функции по ошибке. Пример.
- Вопрос17. Стандартная форма представления передаточной функции разомкнутой системы.
- 20. Функция чувствительности и дополнительная функция чувствительности. Интуитивные требования к выбору управляющего устройства.
- 21. Корневые методы оценки качества переходного процесса. Оценка быстродействия.
- 22. Математическая модель двигателя постоянного тока
- 23 Понятие об устойчивости сау
- 24. Селективная абсолютная инвариантность к задающему воздействию в системах с единичной обратной связью. Принцип внутренней модели.
- 25. Алгебраический критерий устойчивости Гурвица.
- 26. Правила преобразования структурных схем.
- 27. Относительная устойчивость.
- 30( Как62). Фомирование частотных характеристик замкнутой системы. Ограничения на дополн. Ф-ю чувств. Смешанн чувствит.
- 32. Коррекция системы с опережением по фазе(реальный пд-регулятор)
- 34. Коррекция с помощью ку с отставанием по фазе
- 35. Уравнение звена в символической форме.
- 36. Понятие о корневом годографе.
- Вопрос 37. Описание элементов сау. Линеаризация.
- 38 Понятие о коэффициентах ошибок
- Вычисление коэффициентов ошибок с помощью пф по ошибке
- 39. Передаточные функции системы с единичной обратной связью.
- 40. Критерий Найквиста для случая устойчивой разомкнутой системы. Критический коэффициент усиления.
- 41. Критерий Найквиста для случая неустойчивой разомкнутой системы.
- 42. Линеаризация математической модели бака с жидкостью.
- 43 Понятие о коэффициентах ошибок
- Коэффициенты ошибок статических и астатических систем.
- 44.(Вкл в себя72) Количественная оценка неопределенностей модели объекта
- 45. Типовые динамические звенья и их характеристики. Интегрирующее звено. Дифференцирующие и форсирующие звенья.
- 46. Критерий Найквиста для случая нейтрально-устойчивой разомкнутой системы.
- Вопрос 47. Афх разомкнутой системы и ее предельные значения.
- 1) Замкнутая система неустойчива
- 50. Обеспечение астатизма по возмущающему воздействию.
- 2) Уравнение звена в изображениях. Передаточная функция звена (пф)
- 53 Минимально-фазовые звенья
- 54. Введение связей по возмущению
- 55. Построение лчх разомкнутой системы. Правила построения лачх. Пример.
- 56. Частотные методы оценки качества переходного процесса.
- Вопрос 57. Ошибка по возмущению.
- 58 Робастное качество.
- 59.Задача слежения и регулирования. Возмущения и ограничения.
- 60. Критерий Михайлова.
- 61. Показатели качества работы сау в переходном процессе при ступенчатом воздействии
- 62. Формирование частотных характеристик замкнутой системы
- 64, Параметрический синтез сау по методу лчх
- 65. Понятие о синтезе системы. Требования к проектируемой системе.
- 66. Методы робастного управления
- 67. Устойчивость по входу.
- 71.Внутренняя устойчивость замкнутой системы.
- 72. (Из44) Аддитивная и мультикативная неопределенности.Представление неопределенности в частотной (комплексной) области.