Сравнение цифрового и аналогового сигнала
Традиционное аналоговое представление сигналов основано на подобии (аналогичности) электрических сигналов (изменений тока и напряжения) представленным ими исходным сигналам (звуковому давлению, температуре, скорости и т.п.), а также подобии форм электрических сигналов в различных точках усилительного или передающего тракта. Форма электрической кривой, описывающей (также говорят - переносящей) исходный сигнал, максимально приближена к форме кривой этого сигнала.
Такое представление наиболее точно, однако малейшее искажение формы несущего электрического сигнала неизбежно повлечет за собой такое же искажение формы и сигнала переносимого. В терминах теории информации, количество информации в несущем сигнале в точности равно количеству информации в сигнале исходном, и электрическое представление не содержит избыточности, которая могла бы защитить переносимый сигнал от искажений при хранении, передаче и усилении.
Цифровое представление электрических сигналов призвано внести в них избыточность, предохраняющую от воздействия паразитных помех. Для этого на несущий электрический сигнал накладываются серьезные ограничения - его амплитуда может принимать только два предельных значения - 0 и 1. Вся зона возможных амплитуд в этом случае делится на три зоны: нижняя представляет нулевые значения, верхняя - единичные, а промежуточная является запрещенной - внутрь нее могут попадать только помехи. Таким образом, любая помеха, амплитуда которой меньше половины амплитуды несущего сигнала, не оказывает влияния на правильность передачи значений 0 и 1. Помехи с большей амплитудой также не оказывают влияния, если длительность импульса помехи ощутимо меньше длительности информационного импульса, а на входе приемника установлен фильтр импульсных помех.
Сформированный таким образом цифровой сигнал может переносить любую полезную информацию, которая закодирована в виде последовательности битов - нулей и единиц; частным случаем такой информации являются электрические и звуковые сигналы. Здесь количество информации в несущем цифровом сигнале значительно больше, нежели в кодированном исходном, так что несущий сигнал имеет определенную избыточность относительно исходного, и любые искажения формы кривой несущего сигнала, при которых еще сохраняется способность приемника правильно различать нули и единицы, не влияют на достоверность передаваемой этим сигналом информации. Однако в случае воздействия значительных помех форма сигнала может искажаться настолько, что точная передача переносимой информации становится невозможной - в ней появляются ошибки, которые при простом способе кодирования приемник не сможет не только исправить, но и обнаружить.
Для еще большего повышения стойкости цифрового сигнала к помехам и искажениям применяется цифровое избыточное кодирование двух типов: проверочные (EDC - Error Detection Code, обнаруживающий ошибку код) и корректирующие (ECC - Error Correction Code, исправляющий ошибку код) коды. Цифровое кодирование состоит в простом добавлении к исходной информации дополнительных битов и/или преобразовании исходной битовой цепочки в цепочку большей длины и другой структуры. EDC позволяет просто обнаружить факт ошибки - искажение или выпадение полезной либо появление ложной цифры, однако переносимая информация в этом случае также искажается; ECC позволяет сразу же исправлять обнаруженные ошибки, сохраняя переносимую информацию неизменной. Для удобства и надежности передаваемую информацию разбивают на блоки (кадры), каждый из которых снабжается собственным набором этих кодов.
Каждый вид EDC/ECC имеет свой предел способности обнаруживать и исправлять ошибки, за которым опять начинаются необнаруженные ошибки и искажения переносимой информации. Увеличение объема EDC/ECC относительно объема исходной информации в общем случае повышает обнаруживающую и корректирующую способность этих кодов.
В качестве EDC популярен циклический избыточный код CRC (Cyclic Redundancy Check), суть которого состоит в сложном перемешивании исходной информации в блоке и формированию коротких двоичных слов, разряды которых находятся в сильной перекрестной зависимости от каждого бита блока. Изменение даже одного бита в блоке вызывает значительное изменение вычисленного по нему CRC, и вероятность такого искажения битов, при котором CRC не изменится, исчезающе мала даже при коротких (единицы процентов от длины блока) словах CRC. В качестве ECC используются коды Хэмминга (Hamming) и Рида-Соломона (Reed-Solomon), которые также включают в себя и функции EDC.
Информационная избыточность несущего цифрового сигнала приводит к значительному (на порядок и более) расширению полосы частот, требуемой для его успешной передачи, по сравнению с передачей исходного сигнала в аналоговой форме. Кроме собственно информационной избыточности, к расширению полосы приводит необходимость сохранения достаточно крутых фронтов цифровых импульсов.
Кроме целей помехозащиты, информация в цифровом сигнале может быть подвергнута также линейному или канальному кодированию, задача которого - оптимизировать электрические параметры сигнала (полосу частот, постоянную составляющую, минимальное и максимальное количество нулевых/единичных импульсов в серии и т.п.) под характеристики реального канала передачи или записи сигнала.
Полученный несущий сигнал, в свою очередь, также является обычным электрическим сигналом, и к нему применимы любые операции с такими сигналами - передача по кабелю, усиление, фильтрование, модуляция, запись на магнитный, оптический или другой носитель и т.п. Единственным ограничением является сохранение информационного содержимого - так, чтобы при последующем анализе можно было однозначно выделить и декодировать переносимую информацию, а из нее - исходный сигнал.
Преимущества цифрового сигнала перед аналоговым:
1) Затухание и нарушение формы в цифровом случае не столь сильно как в аналоговом
2) При ретрансляции цифрового сигнала проще восстановить его изначальную форму, которая известна точно, в отличие от аналогового сигнала.
3) При ретрансляции аналогового сигнала ошибки накапливаются
Преимущества цифровой передачи перед аналоговой:
1) Цифровая передача более надёжна в силу вышесказанного
2) По цифровой сети можно передавать одновременно много данных с большей скоростью
3) Цифровая передача дешевле, т.к. проще восстанавливать сигнал
4) Цифровую сеть проще эксплуатировать
- 1. Компьютерные сети: определение
- 2. Главные сетевые услуги
- 3. Обобщённая структура компьютерной сети
- 4. Классификация компьютерных сетей
- 5.Локальные сети: определение
- 6. Классификация локальных сетей
- 7. Сети с централизованным управлением: достоинства и недостатки
- 8.Одноранговые сети: достоинства и недостатки
- 9. Сети «Клиент-сервер»: достоинства и недостатки
- 10.Технология клиент-сервер. Виды серверов
- 11. Локальные сети: базовые топологии
- 12. Физические топологии: сравнительная характеристика
- 13. Физические среды передачи данных: классификация
- 14. Толстый коаксиальный кабель
- 15. Тонкий коаксиальный кабель
- 16. Витая пара: виды и категории
- 17.Оптоволоконный кабель: характеристики
- 18. Одномодовое, многомодовое оптоволокно
- 19. Преимущества и недостатки оптических систем связи
- 20. Беспроводная среда передачи
- 21. Диапазоны электромагнитного спектра
- 22. Радиорелейные линии связи
- 23. Спутниковые каналы передачи данных
- 24. Геостационарный спутник
- 25. Средне- и низкоорбитальные спутники
- 26. Инфракрасное излучение
- 27. Системы персонального радиовызова
- 28. Сотовые системы мобильной связи
- 29. Транкинговая радиосвязь
- 30. Методы доступа к среде передачи: классификация
- 31. Метод доступа к среде csma/cd. Этапы дотупа к среде
- 33. Метод доступа с маркером
- 34. Метод доступа по приоритету
- 35. Модель взаимодействия открытых систем osi
- 36. Понятия протокола и интерфейса
- 37. Уровни эталонной модели и их функции
- 38. Стеки протоколов
- 39. Сетевая технология: определение
- Протоколы уровней mac и llc взаимно независимы - каждый протокол mac-уровня может применяться с любым типом протокола llc-уровня и наоборот.
- 47. Хронология Ethernet
- 48. Форматы кадров Ethernet.
- 55. Стек Ethernet.
- 61. Ieee 802.4 (Arcnet ): история, время появления, основные характеристики.
- 62. Сеть Token Ring: принципы работы и основные характеристики.
- 63. Fddi. Архитектура сети, метод доступа, стек протоколов.
- 64. Fddi. Кадр. Процедуры управления доступом к кольцу и инициализации работы кольца.
- 65. Отличия wan от lan.
- 68. Классификация глобальных сетей:
- 74) Глобальная сеть Интернет. История появления сети Интернет.
- 16 Мая, Минск /Корр. Белта/. Количество абонентов и пользователей сети Интернет в Беларуси достигло 6,8 млн.
- 76) Принципы Интернета
- 77) Виды услуг, предоставляемых в сети Интернет.
- 78) Www. История появления. Основные понятия.
- 79) Протоколы электронной почты
- 80) Стек протоколов tcp/ip
- 81) Адресация в сети Интернет.
- 82) Протокол tcp. Основные функции. Организация установления соединений
- 83) Протокол udp
- 84) Протокол ip. Основные функции. Формат заголовка. Версии протокола
- 85) Классы ip-адресов.
- 86) Особые ip-адреса
- 87) Подсети: назначение
- 88) Маска ip-адреса
- 90) Формат ip-пакета
- 91) Принципы маршрутизации
- 92) Протоколы arp, rarp: назначение
- 93) Протокол dhcp
- 95) Методы доступа к сети Интернет
- 96) Сетевые адаптеры
- 97) Передача кадра (этапы)
- 98) Прием кадра (этапы)
- 99) Классификация адаптеров
- 100) Повторитель (repeator)
- 101) Концентратор (hub)
- 102) Мост (bridge)
- 103) Отличия моста от повторителя:
- 104) Ограничения топологии сети, построенной на мостах
- 105) Коммутатор (switch, switching hub)
- 106) Основные задачи коммутаторов
- 107) Построение таблицы mac-адресов
- 108) Протокол покрывающего дерева (Spanning Tree Protocol)
- 109) Коммутатор или мост
- 110) Маршрутизатор: назначение, классификация
- 111) Функции маршрутизатора:
- 112) Маршрутизаторы против коммутаторов
- 113) Общая характеристика сетей атм. Основные компоненты. Трёхмерная модель протоколов сети атм.
- 114) Уровень адаптации атм, его функции.
- 115) Уровень атм и физический уровень в сетях атм. Функции.
- 116) Основные виды интерфейсов в сетях атм.
- 117) Виртуальные пути и виртуальные каналы в атм. Организация их установления.
- 118) Формат ячейки атм.
- Сети пакетной коммутации X.25.
- Сети Frame Relay.
- Сети isdn
- Виртуальные сети
- Методика расчета конфигурации сети Ethernet.
- Методика расчета конфигурации сети Fast Ethernet
- Сигналы: характеристики и классификация
- Причины ухудшения сигнала при передаче
- Сравнение цифрового и аналогового сигнала
- Модуляция при передаче аналоговых сигналов
- Преобразование аналогового сигнала в цифровой
- Теорема Найквиста-Котельникова
- Импульсно-кодовая модуляция
- Квантование
- Методы кодирования
- Потенциальный код nrz
- Биполярное кодированиеAmi
- Манчестерский код
- Потенциальный код 2b1q
- Потенциальный код 4b/5b
- Методы мультиплексирования
- Коммутация каналов на основе метода fdm
- Коммутация каналов на основе метода wdm
- Коммутация каналов на основе метода tdm
- Режимы использования среды передачи: дуплекс, симплекс, полудуплекс.
- Понятие икт
- Обобщенная структура телекоммуникационной сети
- Сеть доступа
- Транспортная сеть
- Коммутация: классификация.
- Сетевой интеллект
- Сетевое управление: уровни
- Иерархия скоростей
- Сети pdh
- Ограничения технологии pdh
- Сети sdh/Sonet
- Скорости передачи иерархии sdh