logo
датчики

Тема 4. Физические основы оптических систем и оптоэлектронных устройств и приборов.

Оптическое излучение представляет собой электромагнитные волны, поэтому оптика — часть общего учения об электромагнитном поле. Оптический диапазон длин волн охватывает около 20 октав и ограничен, с одной стороны, рентгеновскими лучами, а с другой — микроволновым диапазоном радиоизлучения. Такое ограничение условно и в значительной степени определяется общностью технических средств и методов исследования явлений в указанном диапазоне. Для этих средств и методов характерны основанные на волновых свойствах излучения формирование изображений оптических предметов с помощью приборов, линейные размеры которых много больше длины волны излучения, а также использование приёмников света, действие которых основано на его квантовых свойствах.

Также оптика – раздел физики, изучающий свойства и физическую природу света, а также его взаимодействие с веществом. Учение о свете принято делить на три части:

-геометрическая или лучевая оптика, в основе которой лежит представление о световых лучах;

-волновая оптика, изучающая явления, в которых проявляются волновые свойства света;

-квантовая оптика, изучающая взаимодействие света с веществом, при котором проявляются корпускулярные свойства света.

Геометрическая оптика – это раздел оптики, изучающий законы распространения света в прозрачных средах и отражения света от зеркальных или полупрозрачных поверхностей.

Основные законы геометрической оптики: закон прямолинейного распространения света, закон отражения и преломления света, закон независимости световых пучков, зеркальное и диффузное отражение, закон независимости световых пучков.

Волновая оптика - изучает явления, в которых проявляется волновые свойства света. Интерференция – один из двух путей переноса энергии в пространстве. Это явление происходит при взаимодействии двух и более волн одинаковой частоты, распространяющихся в разных направлениях. При встрече двух волн в противофазе – наблюдается штиль, мертвая точка – деструктивная интерференция; при совпадении по фазе – удваивание амплитуды – конструктивная интерференция. На основе этого явления создан интерферометр: один луч разбивается на два синфазных луча. Смещение интерференционной картины позволяет отслеживать положение луча.

Дифракция – в основе лежит принцип Гюйгенса, т.е. каждая точка на пути распространения луча может являтся новым источником вторичных волн.

Квантовая оптика раздел оптики, изучающий явления, в которых проявляется корпускулярная природа света. Одна из главных проблем: описание взаимодействия света с веществом, учитывая квантовую природу объекта, а также исследования света в специальных природных условиях.

Оптоэлектроника - важная самостоятельной областью функциональной электроники и микроэлектроники. Оптоэлектронный прибор - это устройство, в котором при обработке информации происходит преобразование электрических сигналов в оптические и обратно.

Существенная особенность оптоэлектронных устройств состоит в том, что элементы в них оптически связаны, а электрически изолированы друг от друга.

Оптоэлектроника охватывает два основных независимых направления – оптическое и электронно-оптическое.

Оптическое направление базируется на эффектах взаимодействия твердого тела с электромагнитным излучением. Оно опирается на голографию, фотохимию, электрооптику и другие явления. Оптическое направление иногда называют лазерным.

Электронно-оптическое направление использует принцип фотоэлектрического преобразования, реализуемого в твердом теле посредством внутреннего фотоэффекта, с одной стороны, и электролюминесценцией, с другой. В основе этого направления лежит замена гальванических и магнитных связей в традиционных электронных цепях оптическими. Это позволяет повысить плотность информации в канале связи, его быстродействие, помехозащищенность.

Оптрон — электронный прибор, состоящий из излучателя света (обычно — светодиод, в ранних изделиях — миниатюрная лампа накаливания) и фотоприёмника (биполярных и полевых фототранзисторов, фотодиодов, фото тиристоров, фоторезисторов), связанных оптическим каналом и как правило объединённых в общем корпусе.

Принцип работы оптрона заключается в преобразовании электрического сигнала в свет, его передаче по оптическому каналу и последующем преобразовании обратно в электрический сигнал.

Рис.1. Оптрон с внутренней (а) и внешними (б) фотонными связями: 1, 6 – источники света; 2 – световод; 3, 4 – приемники света; 5 – усилитель.

Основным элементом оптоэлектроники является оптрон (см. рис. 1).