Диаграммы Вейча
,
.
По полученным уравнениям можно построить двухуровневую схему одноразрядного комбинационного сумматора.
Полученную схему можно упростить, если рассматривать Si как функцию 4-х переменных Si=Si(аi,вi,Pi,Pi+1).
Отсюда имеем:
.
Первая схема, имеющая парафазные входы, обладает большим быстродействием, т.к. число уровней здесь r=2, суммарное число входов у логических элементов равно в1=25.
Схема с парафазными входами
Вторая схема, имеющая однофазные входы, обладает худшим быстродействием, т.к. r=6. Суммарное число входов равно здесь в2=17, т.е. последняя схема несколько проще.
Схема с однофазными входами
Схема с однофазными входами на элементах И-НЕ и ИЛИ-НЕ имеет вид:
Число уровней r=5, суммарное число входов равно в3=19, В зависимости от назначения и следует использовать ту или иную схему.
Одноразрядный накапливающий сумматор
Одноразрядным сумматором накапливающего типа является схема, суммирующая поочередно поступающие на ее вход цифры слагаемого и переноса с запоминанием результата суммирования. Для запоминания результата сложения на выходе рассмотренных комбинационных сумматоров можно установить триггеры памяти (триггера R-S и D-типов). Совместно с триггером памяти комбинационный сумматор будет выполнять функции накапливающего сумматора.
Роль накапливающего сумматора может выполнять и счетный триггер со схемой формирования переноса, на счетный вход которого все слагаемые должны подаваться последовательно во времени. Суммирование трех слагаемых будет проходить поэтому за три такта.
В первый момент времени t1 через схему ИЛИ1 на вход Т-триггера, который был предварительно установлен в нулевое состояние, поступает цифра ai и запоминается. После завершения переходных процессов в триггере в момент времени t2 через схему ИЛИ1 поступает цифра вi второго слагаемого. При этом Т-триггер реализует функцию . Наконец в следующий момент времени t3 через схему ИЛИ1 подается цифра переноса из более младшего разряда Pi и триггер реализует функцию:
, которая совпадает с функцией Si, полученной ранее по таблице истинности одноразрядного сумматора. Таким образом, по истечении трех тактов в триггере будет находится значение i-ого разряда суммы слагаемых А и В, т.е. Si.
Сигнал переноса Pi+1 формируется комбинационной схемой, стоящей на выходе триггера. В момент времени t3, когда триггер еще находится в состоянии f1, приходит сигнал Pi. На выходе И1 имеем . Если теперь к f3 добавить через дизъюнкцию ai×bi, то получится Pi+1. Непосредственно ai×bi получить с помощью конъюнктора нельзя, т.к. они поступают в различные дискретные моменты времени. Поэтому ai×bi формируются с помощью элемента И2 реализующего функцию
.
Окончательно, сигнал переноса Pi+1 на выходе ИЛИ2 равен
Этот сигнал совпадает с сигналом, формируемом в комбинационном сумматоре на выходе Pi+1 .
Недостаток рассмотренного сумматора заключается в том, что он имеет малое быстродействие, поскольку в каждом цикле суммирования число срабатываний триггера может равняться четырем (Уст «0», ai(t1), bi(t2), Pi(t3)).
Достоинство накапливающего сумматора по сравнению с комбинационным состоит в более простой организации суммирования с накоплением результата, благодаря его способности к запоминанию. Полученная сумма сохраняется в сумматоре и после снятия входных сигналов.
Комбинационно-накапливающий одноразрядный сумматор
Положительные свойства сумматоров накапливающего и комбинационного типов сочетает в себе сумматор комбинационно-накапливающего типа, в котором сигнал переноса вырабатывается комбинационной схемой, а сумма образуется в Т-триггере, на счетный вход которого с помощью другой комбинационной схемы подается результат сложения по модулю два цифр второго слагаемого и переноса.
- Раздел I. Введение. Общие сведения о цифровых автоматах Лекция 1. Основные понятия и определения.
- Раздел 2. Синтез цифровых автоматов без памяти
- Преобразование функции в минимальную конъюнктивную нормальную форму (кнф).
- Раздел 3. Общая теория конечных цифровых автоматов с памятью. Лекция 4. Основные понятия и определения.
- Элементарный автомат
- Диаграмму Вейча
- Граф d-триггера
- Матрица переходов rs-триггера:
- Матрица переходов jk-триггера:
- Перерисованная совмещенная таблица переходов и выходов
- Диаграммы Вейча
- Двухступенчатый триггер
- Раздел 4.Синтез типовых узлов эвм
- Кодированная таблица переходов и функций возбуждения
- Минимальные дизъюнктивные нормальные формы функций возбуждения триггеров
- Регистр сдвига
- Временная диаграмма
- Асинхронный вычитающий счетчик
- Асинхронный реверсивный счетчик
- Диаграммы Вейча
- Счетчик на синхронных т-триггерах
- Счетчик со сквозным переносом
- Организация цепей сквозного переноса
- Диаграммы Вейча
- Синхронный пятеричный счетчик
- Счетчик на кольцевых сдвигающих регистрах
- Счетчик Джонсона
- По матрице построим схему счетчика:
- Дешифратор с парафазными входами
- Линейный дешифратор
- Принцип построения пирамидального дешифратора на 16 выходов
- Полусумматор
- Кроме сумматоров существуют полусумматоры, которые осуществляют сложение двух чисел с формированием сигналов суммы и переноса.
- Диаграммы Вейча
- Сумматор комбинационно-накапливающего типа
- Последовательный сумматор
- В свою очередь:
- Раздел 5. Лекция 13. Абстрактный синтез конечных автоматов
- Регулярным выражением:
- Раздел 6. Лекция 15. Вероятностные автоматы