logo
ЭЛ_ПлДиоды-3

Полупроводниковые стабилитроны

Полупроводниковые стабилитроны, называемые иногда опорными диодами, предназначены для стабилизации напряжений; их работа основана на использовании явления электрического пробоя р-n-перехода при включении диода в обратном направлении.

Механизм пробоя может быть туннельным, лавинным или смешанным. У низковольтных стабилитронов (с низким сопротивлением базы) более вероятен туннельный пробой. У стабилитронов с высокоомной базой (сравнительно высокоомных) пробой носит лавинный характер. Материалы, используемые для создания р-n-переходов стабилитронов, имеют высокую концентрацию примесей. При этом напряжение р-n-перехода значительно выше, чем у обычных диодов. При относительно небольших обратных напряжениях в р-n-переходе возникает сильное электрическое поле, вызывающее электрический пробой р-n-перехода. В режиме пробоя нагрев диода не носит лавинообразного характера. Поэтому электрический пробой не переходит в тепловой.

В качестве примера на рис. 1.15,а приведены вольт-амперные характеристики стабилитрона Д814Г при различных температурах. На рис. 1.15, б показано условное обозначение стабилитронов в принципиальных схемах.

Основные параметры стабилитронов:

напряжение стабилизации - падение напряжения на стабилитроне при протекании заданного тока стабилизации;

максимальный ток стабилизации ;

минимальный ток. стабилизации ;

дифференциальное сопротивление , которое определяется при заданном значении тока на участке пробоя как ;

температурный коэффициент напряжения стабилизации — относительное изменение напряжения стабилизации при изменении температуры окружающей среды на :

.

Дифференциальное сопротивление при увеличении тока стабилизации уменьшается на 10-20%. Это объясняется тем, что при увеличении приложенного напряжения увеличивается площадь участков, на которых произошел пробой. При токе, близком к номинальному, дифференциальное сопротивление стабилитрона близко к значению собственного сопротивления базы .

Пробойный режим не связан с инжекцией неосновных носителей. Поэтому в стабилитроне инерционные явления, связанные с накоплением и рассасыванием носителей, при переходе из области пробоя в область запирания и обратно практически отсутствуют. Это позволяет использовать их в импульсных схемах в качестве фиксаторов уровней и ограничителей. Включение полупроводниковых стабилитронов в схему стабилизации выходного напряжения показано на рис. 1.15, в. При увеличении напряжения питания увеличивается ток в цепи, а падение напряжения на стабилитроне и на нагрузке остается неизменным. При увеличении тока через стабилитрон возрастает падение напряжения на резисторе R. Другими словами, почти все приращение напряжения питания падает на резисторе R, а выходное напряжение остается неизменным за счет своеобразной характеристики обратной ветви стабилитрона.