logo
Расчет установившихся режимов линейных электрических цепей

1.1 Цель работы

1. Освоение методики измерения токов, напряжений, потенциалов.

2. Опытная проверка законов Кирхгофа и принципа наложения.

3. Расчёт токов в ветвях заданной электрической цепи методами контурных токов, узловых потенциалов, эквивалентного генератора.

4. Построение потенциальной диаграммы.

5. Составление баланса мощностей.

6. Сравнение результатов опыта и расчёта.

1.2 Теоретические сведения

Законы Кирхгофа

Законы Кирхгофа являются фундаментальными законами электротехники.

Первый закон Кирхгофа формулируется для узла электрической цепи: алгебраическая сумма токов ветвей, сходящихся в узле электрической цепи, равна нулю. При этом подходящие к узлу токи записываются с одним знаком, отходящие - с другим. Например, для узла, изображенного на рис. 1, можно записать первый закон Кирхгофа:

Рис. 1 Узел электрической цепи

I1 + I2 - I3 - I4 = 0 или - I1 - I2 + I3 + I4 = 0

Число линейно независимых уравнений, составляемых по первому закону Кирхгофа, на единицу меньше числа узлов схемы.

Второй закон Кирхгофа формулируется для контура электрической цепи: алгебраическая сумма падений напряжений на участках контура равна алгебраической сумме ЭДС того же контура. При этом если направление ЭДС совпадает с направлением обхода контура, то она берется со знаком „плюс", если не совпадает - со знаком „минус”. Падение напряжения на элементе берется со знаком „плюс", если направление тока в элементе совпадает с направлением обхода, если не совпадает - со знаком „минус".

Например, для контура, показанного на рис. 2, можно записать:

Рис. 2

R1I1 + R2I2 - R3I3 - R4I4 = E1 - E2

Уравнения по второму закону Кирхгофа составляются для независимых контуров - контуров, отличающихся друг от друга хотя бы одной новой ветвью.

Последовательность определения токов ветвей по законам Кирхгофа:

1) Выбирается направления токов ветвей. Число токов равно числу ветвей схемы. Токи ветвей с источниками тока известны.

2) Записываются уравнения по первому закону Кирхгофа, их число на единицу меньше числа узлов схемы.

3) Выбираются независимые контуры и направления их обхода.

4) Записываются уравнения по второму закону Кирхгофа для независимых контуров, при этом уравнения для контуров, включающих источники тока, не составляются.

5) В результате совместного решения уравнений, составленных по первому и второму законам Кирхгофа, определяются токи ветвей.

Метод контурных токов

В этом методе за неизвестные принимают токи независимых контуров (контурные токи), а токи ветвей выражают через контурные.

Рассмотрим правила формирования уравнений на примере схемы, приведенной на рис. 3, в которой известны величины ЭДС и ток источника тока, а также все сопротивления.

Рис. 3

Выберем независимые контуры и направления их обхода. Допустим, что в каждом контуре протекает свой контурный ток, совпадающий с направлением обхода - I11 , I22 , I33 .Выберем направления токов ветвей и составим уравнения по второму закону Кирхгофа для выбранных контуров (для контура с источником тока уравнение не составляется, так как I33 = J):

R1I1 + (R2 + R3)I2 = E1

-(R2 + R3)I2 - R4I3 + R5I4 = -E2 (*)

Выразим токи ветвей через контурные:

I1 = I11 ; I2 = I11 - I22 ; I6 = I3 = -I22;

I4 = I22 + I33 ; I5 = I33 ; I33 = J ; I5 = J

и подставим в систему (*):

R1I11 + (R2 + R3)(I11 - I22) = E1

-(R2 + R3) (I11 - I22) - R4(-I22) + R5(I22 + I33) = -E2

После группировки получим:

(R1 + R2 + R3)I11 - (R2 + R3) I22 = E1

-(R2 + R3) I11 + -(R2 + R3 + R4 + R5 )I22 + R5I33 = -E2

В общем виде для трехконтурной схемы с одним источником тока:

R11I11 + R12I22 + R13I33 = E11

R21I11 + R22I22 + R23I23 = E22,

где R11 , R22 - собственные сопротивления контуров I11 и I22, каждое из которых равно сумме сопротивлении, входящих в данный контур;

R12 = R21 , R13 ,R23 - общие сопротивления контуров. Общее сопротивление равно сопротивлению ветви, общей для рассматриваемых контуров, Общие сопротивления берутся со знаком “плюс”, если контурные токи в них направлены одинаково и со знаком “минус”, если контурные токи в них направлены встречно. Если контуры не имеют общей ветви, то их общее сопротивление равно нулю. В рассматриваемом примере R13 = 0;

Е11 , Е22 - контурные ЭДС, каждая из которых равна алгебраической сумме ЭДС данного контура. ЭДС берется со знаком ”плюс”, если ее направление совпадает с направлением контурного тока, если не совпадает - со знаком “минус”.

Последовательность определения токов ветвей методом контурных токов

1) Выбираются независимые контуры и направления контурных токов.

2) Записывается система уравнений в общем виде. Число уравнений равно числу независимых контуров схемы минус число контуров, содержащих источники тока. Количество слагаемых в левой части уравнения равно числу независимых контуров.

3) Определяются коэффициенты при неизвестных - собственные и общие сопротивления контуров, а также контурные ЭДС. Если общей ветвью контуров является источник ЭДС без сопротивления, то общее сопротивление этих контуров равно нулю.

4) Рассчитываются контурные токи.

5) Выбираются направления токов ветвей.

6) Определяются токи ветвей.

Метод узловых потенциалов

В этом методе за неизвестные принимают потенциалы узлов схемы, а токи ветвей находят по закону Ома.

Рассмотрим правила формирования уравнений на примере схемы, приведенной на рис. 4, в которой известны величины ЭДС и ток источника тока, а также все сопротивления.

В этой схеме два неизвестных потенциала: и , поскольку =, =, =, а потенциал одного из узлов, в данном случае , принимается равным нулю, что на схеме обозначается заземлением узла 3.

Запишем уравнения по первому закону Кирхгофа, предварительно выбрав направления токов в ветвях:

Рис. 4

узел 1: -I1 + I3 + I4 + I5 -I7 = 0

узел 2: I2 - I3 - I4 + I6 + I7 = 0 (*)

Выразим токи ветвей через потенциалы узлов:

;

;

;

;

; ;

и подставим в систему (*):

После группировки получим:

В общем виде:

где , - собственные (узловые) проводимости узлов 1 и 2, каждая из которых равна сумме проводимостей ветвей, сходящихся в данном узле;

, - общая проводимость - взятая со знаком “минус” сумма проводимостей ветвей, соединяющих узлы 1 и 2 (проводимость ветви, содержащей источник тока, равна нулю);

, - задающие (узловые) токи узлов 1 и 2, каждый из которых равен алгебраической сумме произведений ЭДС на проводимость ветвей, в которых они находятся (рассматриваются ветви, подключенные к данному узлу), и алгебраической сумме токов источников тока, подключенных к данному узлу. Знаки слагаемых: “плюс” - если направление ЭДС (источника тока) к узлу, “минус” - если направление ЭДС (источника тока) от узла.

Последовательность определения токов ветвей методом узловых потенциалов:

1) Записывается система уравнений в общем виде. Число уравнений системы на единицу меньше числа узлов схемы. Если в схеме содержится ветвь с источником ЭДС без сопротивлений, то 2 = 1 + E1. Приняв 1 = 0, получим 2 = E1.

2) Определяются коэффициенты при неизвестных - собственные и общие проводимости, также задающие токи узлов.

3) Рассчитывается потенциалы узлов.

4) Выбираются направления токов ветвей.

5) Определяются токи ветвей.

Метод эквивалентного генератора

При расчетах линейных электрических цепей возможна замена части цепи, содержащей источник ЭДС и тока, относительно зажимов выделенной ветви ab (рис. 5,а) активным двухполюсником, состоящим из последовательно соединенных ЭДС и сопротивления. В этом случае указанную ветвь можно рассматривать как нагрузку эквивалентного генератора с ЭДС ЕГ и сопротивлением RГ.

Рис. 5

Эквивалентная ЭДС ЕГ равна напряжению на зажимах ab при разомкнутой ветви RH, т.е. напряжению холостого хода Uх.х. Сопротивление RГ равно входному сопротивлению цепи относительно зажимов ab при разомкнутой ветви RH. Источники при этом исключаются из схемы.

Эквивалентные параметры ЕГ и RГ могут быть определены опытным путем из режимов холостого хода (рис. 5,б) и короткого замыкания (рис. 5,в):

ЕГ = Uх.х.;

Сравнение методов.

Наиболее эффективным методом при расчете цепи постоянного тока является тот метод, который приводит к наименьшему числу уравнений, составляющих систему решения. Поэтому выбор способа решения напрямую зависит от исследуемой схемы. Если в этой схеме малое количество узлов, то решение удобнее проводить методом узловых потенциалов, если же в схеме небольшое количество независимых контуров, то удобней решать методом контурных токов. Метод эквивалентного генератора можно применять в очень сложных цепях, когда требуется найти один какой-либо параметр. При использовании этого метода число ветвей в схеме для анализа уменьшается на одну, что упрощает расчет.

1.3 Экспериментальная часть

1) Измеряем Е1 и Е2 , показания заносим в таблицу 1.

Параметры исследуемой цепи

Таблица 1

Значения ЭДС, В

Сопротивления резисторов, Ом

Сопротивления амперметров, Ом

Е1

Е2

R1

R2

R3

R4

R5

R6

RA1

RA2

RA3

10

9

123

80

50

80

80

20

2

2

1

При замкнутом ключе S измеряем токи от действия обеих ЭДС, полученные значения заносим в таблицу 2 и 4.

Сравнение значений токов, полученных расчётами и в опыте

Таблица 2

Токи в ветвях, мА

Способ определения

I1

I2

I3

I4

I5

39,5

-1,5

38

Опытным путём

39,3

-1,38

38

91,1

89,7

Методом контурных токов

39,6

-1,18

37,5

90,9

89,8

Методом узловых потенциалов

38,3

Методом эквивалентного генератора

2) Принимаем потенциал одного из узлов схемы (узла номер 3) равным нулю, измеряем потенциалы указанных точек, заносим их в таблицу 3

Сравнение значений потенциалов, полученных расчетом и в опыте

Таблица 3

Потенциалы точек цепи, В

Способ определения

ц1

ц2

ц3

ц4

ц5

ц6

1,8

1,9

0

-7,2

-3,1

6,85

Опытным путём

1,82

1,91

0

Методом узловых потенциалов

3) Измеряем и заносим в таблицу 4 значения токов от действия Е1, Е2 .

Проверка принципа наложения

Таблица 4

включены ЭДС, В

Токи, мА

опыт

расчёт

Е1

I1

I2

I3

преобразованием цепи

I1

I2

I3

42

-14,5

27,5

41,9

-14,3

27,6

Е2

I1

I2

I3

преобразованием цепи

I1

I2

I3

-2,5

13

10,5

-2,6

13

10,4

Е1, Е2

I1

I2

I3

методом наложения

I1

I2

I3

39,5

-1,5

38

39,3

-1,3

38

4) Включаем в схему Е1 и Е2, измеряем ток I3 при R3=0, затем размыкаем ключ S и измеряем напряжение между точками 2 и 3. полученные значения заносим в таблицу 5

Параметры эквивалентного генератора

Таблица 5

Напряжение холостого хода

Eг=U23Х,X, В

Ток короткого замыкания

IЗ К.З, А

Сопротивление

RГ , Ом

Способ определения

4,5

0,067

67,1

Опыт

4,45

66,3

Расчёт

Потенциальная диаграмма

Потенциалы всех узлов, обозначенных на схеме:

Рис. 6 Потенциальная диаграмма для внешнего контура схемы (узлы 3-4-1-2-6-5-3)

1.4 Расчётная часть

Рис. 7 Эквивалентная схема стенда, используемая для проведения расчетов

Составим уравнения по законам Кирхгофа:

-по первому закону Кирхгофа:

I1+I2=I3 39,5-1,5=38 (мА)

-по второму закону Кирхгофа:

Метод контурных токов

Выберем три независимых контура. Обозначим контурные токи: I11, I22, I33, выбрав направление обхода произвольно.

Составим систему уравнений для определения контурных токов:

Для данной схемы при выбранных направлениях обхода контуров их параметры выражаются следующим образом:

Рис. 8 Метод контурных токов

Решив полученную систему уравнений, найдем контурные токи:

Выразим токи ветвей через контурные:

Метод узловых потенциалов

Рис. 9 Метод узловых потенциалов

Запишем систему уравнений для потенциалов узлов 1 и 2:

По исходным данным вычислим значения задающих токов и проводимостей ветвей:

Решив полученную систему уравнений, получим потенциалы узлов:

Исходя из потенциалов узлов и 2-го закона Кирхгофа, найдем токи ветвей:

Расчет токов методом наложения

Метод основан на предположении о линейности цепи, т.е. о том, что все источники в схеме действуют независимо и токи в ветвях схемы можно представить как алгебраическую сумму токов каждого из источников.

Преобразуем исходную схему, исключив второй источник напряжения.

Рис. 10 Преобразование схемы для метода наложения.

Рассчитаем вспомогательные сопротивления (между узлами схемы):

Теперь рассчитаем токи в ветвях схемы с учетом принятых для них направлений.

Проведем аналогичный расчет, исключив первый источник.

Рис. 11 Преобразование схемы для метода наложения

Токи и межузловые сопротивления в данной схеме находятся следующим образом:

Найдем теперь токи I1, I2, I3.

+

Метод эквивалентного генератора

Метод эквивалентного генератора основан на том, что вся схема, подключенная к какой-нибудь одной ее ветви, ток в которой нужно найти, заменяется эквивалентным генератором с ЭДС и внутренним сопротивлением такими, что ток в этой ветви не изменяется по сравнению с исходной схемой.

Рис. 12 Преобразование схемы для метода эквивалентного генератора

Для заданной схемы ЭДС эквивалентного генератора, рассчитанная с использованием метода узловых потенциалов,

.

Внутреннее сопротивление эквивалентного генератора найдем по формуле:

Ток I3 рассчитаем по закону Ома:

.

Проверка баланса мощностей в схеме

Баланс мощностей в схеме определяется следующими выражениями:

Погрешность вычислений найдем по формуле:

Для заданной схемы баланс мощностей запишется в виде:

Проверка баланса мощностей в схеме

Таблица 6

Способ определения

Мощность источников, Вт

Мощность потребителей, Вт

Относительная погрешность, %

Метод узловых потенциалов

1,2043

1,204

<0.02

Метод контурных токов

1,2009

1,2009

0

Метод наложения

1,2009

1,2009

0

2. Исследование и расчет цепей синусоидального тока