logo search
Лаба1

3. Энергетические диаграммы полупроводников.

Согласно представлениям квантовой физики электроны в атоме могут принимать строго определенные значения энергии или, как говорят, занимать определенные энергетические уровни. При этом, согласно принципу Паули, в одном и том же энергетическом состоянии не могут находиться одновременно два электрона. Твердое тело, каковым является полупроводниковый кристалл, состоит из множества атомов, сильно взаимодействующих друг с другом, благодаря малым межатомным расстояниям. Поэтому вместо совокупности разрешенных дискретных энергетических уровней, свойственных отдельному атому, твердое тело характеризуется совокупностью разрешенных энергетических зон, состоящих из большого числа близко расположенных энергетических уровней. Разрешенные энергетические зоны разделены интервалами энергий, которыми электроны не могут обладать и которые называются запрещенными зонами. При температуре абсолютного нуля электроны заполняют несколько нижних энергетических зон. Верхняя из полностью заполненных электронами разрешенных зон называется валентной зоной, а следующая за ней незаполненная зона называется зоной проводимости. У полупроводников валентная зона и зона проводимости разделены запрещенной зоной. При нагреве вещества электронам сообщается дополнительная энергия и они переходят с энергетических уровней валентной зоны на более высокие энергетические уровни зоны проводимости. В проводниках для совершения таких переходов требуется незначительная энергия, поэтому проводники характеризуются высокой концентрацией свободных электронов (порядка 1022 см-3). В полупроводниках для того, чтобы электроны смогли перейти из валентной зоны в зону проводимости, им должна быть сообщена энергия не менее ширины запрещенной зоны. Это и есть та энергия , которая необходима для разрыва ковалентных связей.

На рис. 1.5 представлены энергетические диаграммы собственного электронного и дырочного полупроводников, на которых через EC обозначена нижняя граница зоны проводимости, а через EV - верхняя граница валентной зоны. Ширина запрещенной зоны Eз= Ec- Ev. При комнатной температуре в кремнии она равна 1,1 эВ, в германии - 0,66 эВ, а в арсениде галлия – 1,43 эВ.

Рис.1.5

С точки зрения зонной теории под генерацией свободных носителей заряда следует понимать переход электронов из валентной зоны в зону проводимости (рис. 1.5,а). В результате таких переходов в валентной зоне появляются свободные энергетические уровни, отсутствие электронов на которых следует трактовать как наличие на них фиктивных зарядов - дырок. Переход электронов из зоны проводимости в валентную зону следует трактовать как рекомбинацию подвижных носителей заряда. Чем шире запрещенная зона, тем меньше электронов способно преодолеть ее. Этим объясняется более высокая концентрация электронов и дырок в германии по сравнению с кремнием при одинаковой температуре.

В электронном полупроводнике (рис.1.5,б) за счет наличия пятивалентных примесей в пределах запрещенной зоны вблизи дна зоны проводимости появляются разрешенные уровни энергии ED. Поскольку один пpимесный атом приходится примерно на 106 атомов основного вещества, то пpимесные атомы практически не взаимодействуют друг с другом. Поэтому пpимесные уровни не образуют энергетическую зону и их изображают как один локальный энергетический уровень ЕD, на котором находятся "лишние" электроны пpимесных атомов, не занятые в ковалентных связях. энергетический интервал Eи= Ec-ED называется энергией ионизации. Величина этой энергии для различных пятивалентных примесей лежит в пределах от 0,01 до 0,05 эВ, поэтому "лишние" электроны легко переходят в зону проводимости даже при сравнительно низких температурах.

В дырочном полупроводнике введение трехвалентных примесей ведет к появлению разрешенных уровней ЕA (pис.1.5,в), которые заполняются электронами, переходящими на него из валентной зоны, в результате чего образуются дырки. Переход электронов из валентной зоны в зону проводимости требует больших затрат энергии, чем переход на уровни акцепторов, поэтому концентрация электронов np оказывается меньше концентрации ni, а концентрацию дыpок pp можно считать примерно равной концентрации акцепторов NA.