11. Задающий генератор. Основные характеристики и электрические схемы
З адающий генератор (ЗГ), который генерирует синусоидальные колебания с высокой стабильностью частоты и выходного уровня, является основным элементом генераторного оборудования (ГО). ЗГ представляет собой усилитель 1, охваченный цепью 2 положительной обратной связи (ПОС). усилитель обеспечивает компенсацию потерь в схеме, цепь ПОС – генерацию определенной частоты колебаний. Генерация происходит не на любой частоте, а на какой-то одной ω0, определяемой элементами ЗГ, если для нее не выполняется условие баланса фаз и амплитуд.
На следующем рисунке изображены 2 варианта ФЧХ вблизи ω0.
Надо стремиться к получению большей крутизны ФЧХ петлевого усиления. Крутизна ФЧХ зависит от добротности элементов контура. Из рисунка следует: кривой 2 соответствует цепь ПОС с малыми собственными потерями (высокая добротность), кривой 1 – с большими.
Схемная реализация ЗГ:
Реализация ЗГ отличается большим разнообразием и требует предварительной классификации по ряду показателей. По типу усилительного элемента (УЭ) различают ламповые и транзисторные ЗГ; по числу УЭ – одно- и двухкаскадные; по типу резонансной β-цепи – RC-, LC-, кварцевые и электромеханические ЗГ.
На рисунке изображен вариант двухточечной (трансформаторной) схемы ЗГ. Здесь резонансный контур (Lk, Ck) включен в коллекторную цепь транзистора VT. ПОС обеспечивается за счет индуктивной связи контура с катушкой связи Lсв и определенного подключения концов этой катушки. Элементы R1, R2, R3 совместно с блокировочными конденсаторами С1, С3 обеспечивают необходимый режим транзистора по постоянному току и его стабилизацию.
Т рехточечные однокаскадные схемы ЗГ можно представить в общем виде, где Zj – реактивный двухполюсник (j=1,2,3). Для автоматического выполнения условия баланса фаз необходимо, чтобы напряжение обратной связи (на Z2), подаваемое на вход усилителя (переход база-эмиттер VT), было противофазно напряжению на выходе усилителя (на Z3). В этом случае с учетом инверсии фазы в транзисторе получим, что петлевое усиление имеет суммарный фазовый сдвиг, равный 2π. Противофазность напряжений на Z2 и Z3 будет при условии, что они имеют реактивность одного знака.
- 1.1 Мсп. Основные понятия и определения. Структурная схема мсп.
- 1.2 Мсп классифицируют по следующим признакам:
- 2.Основные принципы уплотнения и разделения сигналов. Способы уплотнения, привести примеры.
- 3.Принципы построения аппаратуры мсп с чрк. Классификация методов построения.
- 4. Методы формирования первичной группы (пг) и их сравнение
- 6. Методы построения линейного тракта асп
- 7. Преобразователи частоты. Назначение и требования к преобразователям частоты.
- 8. Основные схемотехнические решения преобразователей частоты(пч).
- 9. Генераторное оборудование аналоговых мсп. Назначение и основные требования
- 10.Структурные схемы го аналоговых мсп
- 11. Задающий генератор. Основные характеристики и электрические схемы
- 12. Умножители частоты
- 13А. Синхронизация го
- 14.Фильтры в аппаратуре мсп. Классификация электрических фильтров. Типовые схемы и параметры фнч на основе –звеньев.
- 15. Фильтры в аппаратуре мсп. Типовые схемы и параметры фвч, пф, зф на основе - звеньев.
- 16.Параллельная работа фильтров (рис.8.40 – 8.41, 8.49).
- 17. Методы построения линейного тракта асп
- 18. Типовая аппаратура асп. Унификация каналообразующего оборудования.
- 19. Типовые системы передачи для магистральной сети связи
- 20. Аппаратура уплотнения для зоновой сети (рис.11.9 – 11.13).
- 21.Особенности построения систем передачи для местных сетей
- 22. Принципы построения цифровых систем передачи. Особенности преобразования аналогового сигнала в цифровой.
- 23. Дискретизация сигнала по времени.
- 24. Квантование сигнала. Алгоритмы квантования
- 25. Врк. Временное объединение аналоговых сигналов и цифровых потоков
- 26.Стандарты плезиохронной иерархии. Группообразование с двухсторонним согласованием скоростей
- 27.Стандарты плезиохронной иерархии. Группообразование с односторонним согласованием скоростей.
- 28. Особенности цифрового преобразования групповых аналоговых сигналов. Выбор частоты дискретизации
- 29. Аппаратура оконечной станции цсп-икм. Индивидуальное оборудование.
- 30. Кодеры с линейной шкалой преобразования. Классификация. Кодеры последовательного счета.
- 31. Кодеры с линейной шкалой преобразования. Классификация. Кодеры взвешивающие.
- 32.Кодеры с нелинейной шкалой преобразования. Варианты построения (рис.13.25 – 13.30).
- 34.Реализация нелинейных функциональных преобразователей
- 35. Нелинейные кодеки на основе нелинейных цифровых преобразователей
- 36. Нелинейные кодеры с непосредственным преобразованием
- 37.Расчет системных шумов аппаратуры цсп-икм.
- 38.Типовая структурная схема го.
- 39. Особенности реализации отдельных блоков го (13.60-13.63).
- 40. Устройство цикловой синхронизации го (13.64-13.65).
- 41. Приемники синхросигнала
- 42. Линейные коды цсп. Линейные коды с сохранением тактовой частоты.
- 43. Блочные двоичные коды
- 44. Коды с понижением тактовой частоты(рис. 15.17).
- 45.Комбинированные линейные коды
- 46. Регенераторы цсп (рис. 15.23- 15.30)
- 48.Цсп для зоновых и магистральных сетей.
- 49. Цсп для местной первичной сети.
- 50. Цифровая абонентская сеть