logo
ПОСОБИЕ ТСИ Лидии Николаевны

2.6. Адаптер Super vga.

Первоначально совершенствование видеоадаптера VGA шло в основном за счет увеличения объема его видеопамяти: сначала до 512 Кбайт, а затем и до 1 Мбайт. Появились видеоадаптеры, поддерживающие режимы 800x600, 1024x768 при одновременном отображении 256-и оттенков цветов. Для работы с такими видеоадаптерами использовались модернизированные мониторы, имеющие уменьшенное зерно люминофора экрана, повышенные частоты синхронизации и более широкую полосу пропускания видеотракта. Возникло понятие видеосистемы Super VGA, под которым поначалу понималось любое расширение возможностей стандарта VGA. Первой фирмой, изготовившей видеоадаптер, поддерживающий режим 800x600/256, была фирма NEC, а пионером среди видеоадаптеров, поддерживающих разрешение 1024x768, стал видеоадаптер 8514/А фирмы IBM.

Появление многочисленных моделей видеоадаптеров SVGA, изготовленных разными фирмами, породило проблему их совместимости с программным обеспечением. Причина ее возникновения заключалась в том, что расширенные режимы работы видеоадаптера не поддерживали стандартные способы инициализации: каждая из фирм-производителей использовала свои номера видеорежимов, расширенных относительно VGA, и свои команды инициализации. Например, режим 800x600/256 у видеоадаптеров фирмы Trident Microsystems имеет номер 5Eh, у видеоадаптеров фирмы Realtek -27h, а у видеоадаптеров фирмы Tseng Labs — 30h. Следовательно, для установки режима 800x600/256 центральный процессор должен послать каждому из этих видеоадаптеров различные команды, что затрудняет создание универсальной программы.

Долгое время нельзя было говорить о Super VGA как о стандарте еще и потому, что не был четко определен смысл самого термина SVGA. Часто обычный видеоадаптер VGA преподносился продавцами как SVGA только на том основании, что поддерживал видеорежим 800x600/16. Однако для реализации такого режима необходимо менее 256 Кбайт видеопамяти, поэтому практически любой видеоадаптер VGA, имеющий стандартный объем памяти (256 Кбайт), может поддерживать данный режим.

Стремясь исправить это ненормальное положение, Ассоциация стандартов по видеоэлектронике (Video Electronics Standard Association, VESA) предложила свой стандарт на нумерацию и способ инициализации видеорежимов, расширенных относительно VGA. Было предложено считать SVGA-режимами только такие, которые требуют для своей реализации не менее 512 Кбайт видеопамяти. Это позволило создавать универсальные программы, предназначенные для работы в режимах с повышенным разрешением, а также решать вопрос принадлежности видеоадаптера к семейству SVGA. He случайно в течение длительного времени объем видеопамяти был главным критерием качества видеоадаптера SVGA.

Стандарт VESA имел несколько версий, появление которых отражало эволюцию возможностей видеосистемы. Кроме того, в адаптерах SVGA начали использоваться 24-разрядные RAMDAC и прямая кодировка цвета пиксела, благодаря чему появились такие режимы, как High Color (16 бит на пиксел, или 65 536 цветов) и True Color (24 бит на пиксел, или 16 777 216 цветов).

Программы, дополняющие Video BIOS видеоадаптера SVGA для обеспечения поддержки спецификации VESA, получили название VВЕ (VESA BIOS Extension). Первоначально они использовались в виде драйверов и резидентных программ, загружаемых в память по мере необходимости. В настоящее время все современные видеоадаптеры содержат VBE в ROM Video BIOS, благодаря чему совместимость со спецификацией VESA обеспечивается автоматически.

С переходом к более высокому разрешению и большей глубине цвета резко увеличилась загрузка центрального процессора PC и шины ввода/вывода. Чтобы разгрузить центральный процессор, решение ряда задач построения изображения (заполнения кадрового буфера) решили возложить на специализированный набор микросхем (Chipset) видеоадаптера, получивший название графического ускорителя (акселератора).

Другим способом повышения производительности видеосистемы и PC в целом стало применение видеоадаптеров с более быстрым интерфейсом, чем ISA. Первоначально для нужд видеосистемы использовалась 32-разрядная локальная шина VLB (VESA Local Bus), которая в дальнейшем была вытеснена более быстрой и совершенной шиной PCI (Peripheral Component Interconnect — Соединение периферийных устройств). В настоящее время большинство видеоадаптеров, оснащенных функциями ускорения 2D- и 3D-гpaфики, имеют интерфейс AGP. Последним достижением стал новый графический интерфейс PCI Express.

3. 2D- и 3D-акселераторы

2D-акселератор — графический ускоритель для обработки двухмерных графических данных (2D), реализует аппаратное ускорение таких функций, как прорисовка графических примитивов, перенос блоков изображения, масштабирование, работа с окнами, мышью, преобразование цветового пространства. Первоначально видеоадаптеры с аппаратным ускорением графических функций делились на две группы: видеоадаптеры с графическим ускорителем (акселератором) и видеоадаптеры с графическим сопроцессором.

Графический акселератор — устройство, выполняющее заданные логические или арифметические операции по жесткому алгоритму, который не может быть изменен.

Графический сопроцессор — более универсальное устройство и работает параллельно с центральным процессором. Основное отличие графического сопроцессора от графического акселератора в том, что сопроцессор можно запрограммировать на выполнение различных задач, поскольку он является активным устройством: имеет возможность, как и центральный процессор, обращаться к системной оперативной памяти и управлять шиной ввода/вывода.

В современных видеоадаптерах объем и сложность графических функций, выполняемых графическим сопроцессором, стали соизмеримы с объемом задач, решаемых центральным процессором ПК. В связи с этим Chipset, составляющий основу современного видеоадаптера с аппаратной поддержкой графических функций, называют графическим процессором.

3D-акселераторы предназначены для обеспечения возможности видеть на экране проекцию виртуального (не существующего реально) динамического трехмерного объекта, например, в компьютерных играх. Такой объект необходимо сконструировать, смоделировать его объемное изображение, т.е. задать математическую модель объекта (каждую точку его поверхности) в трехмерной системе координат, аналитически рассчитать всевозможные зрительные эффекты (угол падения света, тени и т.п.), а затем спроецировать трехмерный объект на плоский экран. 3D-акселератор необходим только в том случае, когда объемное изображение синтезируется компьютером, т.е. создается программно.

Совокупность приложений и задач, в рамках которых реализуется эта схема построения трехмерного изображения на экране монитора PC, называется трехмерной графикой, или 3D (3-Dimentionalтрехмерный).