13.4. Типовые схемы управления асинхронными электроприводами
Схема управления нереверсивным электроприводом с асинхронным двигателем с короткозамкнутым ротором без использования электрического торможения приведена на рис.13.1. В схеме реализуется пуск электродвигателя прямым подключением обмотки статора к питающей сети и работа в продолжительном режиме. Схема содержит следующие аппараты:
QF – автоматический выключатель (в дальнейшем автомат) с максимально-токовым расцепителем;
КМ – контактор или пускатель;
FR1 и FR2 - тепловые реле;
FU1 и FU2 – предохранители;
SB-П («Пуск») и SB-С («Стоп») - кнопки пуска и остановки электропривода.
В исходном поло-жении схемы вклю-чён автомат QF. Пуск электропривода осу-ществляется нажатием кнопки SB-П. При этом подаётся питание на катушку КМ. Кон-тактор включается и замыкает свои сило-вые контакты, подключая статорную об-мотку к питающей се-ти. После пуска д Рис.13.1. Схема управления нереверсивным электроприводом с асинхронным к.з.двигателем
Чтобы остановить электропривод, нажимают кнопку SB-С («Стоп»), катушка КМ теряет питание и контактор отключает статорную цепь от питающей сети. Схема возвращается в исходное состояние.
Электропривод останавливается под действием статического момента электропривода Мс, который определяется технологией работы механизма.
В схеме имеются следующие защиты. Нулевая защита, которая реализуется контактором КМ, так как управление схемой осуществляется от кнопок. При кратковременном исчезновении питающего напряжения или значительном его снижении контактор КМ отключается, и схема возвращается в исходное состояние.
Максимально-токовая защита в силовых цепях выполняется автоматом QF за счёт использования в нём максимально-токового расцепителя с уставкой срабатывания 1114Iн. При возникновении короткого замыкания в силовой цепи, срабатывает максимально-токовый расцепитель и автомат отключает статорную цепь и электропривод в целом.
Максимально-токовая защита в цепях управления осуществляется предохранителями FU1 и FU2, номинальный ток которых Iн.пр=1,21,3Iмакс.нагр.
Тепловая защита двигателя выполняется тепловыми реле FR1, FR2, размыкающие контакты которых включены в цепь катушки контактора КМ. При срабатывании одного из тепловых реле контактор КМ отключается, и схема возвращается в исходное состояние. Повторно она может быть включена после остывания теплового реле и двигателя.
Некоторые технологии требуют, чтобы процесс остановки электропривода протекал интенсивнее, чем только под действием статического момента. В этом случае в схемах управления используют различные виды электрического торможения - динамическое торможение и торможение противовключением, а также механическое торможение с помощью электромагнитных тормозов.
На рис.13.2 приведена принципиальная схема нереверсивного электропривода, которая позволяет производить пуск и остановку электродвигателя с динамическим торможением.
Рис.13.2. Схема нереверсивного асинхронного электропривода с динамическим торможением
Питание на схему подаётся автоматическим выключателем QF, напряжение переменного тока на обмотку статора – линейным контактором КМ1, напряжение постоянного тока – контактором динамического торможения КМ2. Источник постоянного тока содержит трансформатор Т и выпрямитель V1, подключаемые к сети контактором КМ2 только в режиме торможения.
Команда на пуск подаётся кнопкой SB2-П, а команда на остановку подаётся кнопкой SBC. При ее нажатии включается контактор КМ1, и двигатель подключается к сети. Для остановки двигателя нажимают кнопку SB1-C, контактор КМ1 отключается и отключает двигатель от сети переменного тока. Одновременно нормально закрытым (н.з.) блок-контактом КМ1 включается контактор КМ2, подающий в обмотки статора двигателя постоянный ток. Двигатель переходит в режим динамического торможения. Длительность подачи постоянного тока в обмотки статора контролируется реле времени КТ. После отключения катушки КТ его контакт в цепи катушки КТ2 с выдержкой времени размыкается.
В схеме применены нулевая, максимально-токовая и тепловая защиты, осуществляемая соответственно линейным контактором КМ1, автоматическим выключателем QF с максимально-токовым расцепителем и токовыми реле FR1 и FR2. Схема управления защищена предохранителями FU1 и FU2. При срабатывании любой из защит отключается линейный контактор КМ1. Используемая в схеме блокировка контактами 3-4 и 1-8 запрещает одновременное срабатывание контакторов КМ1 и КМ2.
Когда по условиям технологического процесса необходимо значительно ускорить процесс торможения, то применяют торможение противовключением. Схема реверсивного асинхронного электропривода, в которой реализуется торможение противовключением приведена на рис.13.3. Исходя из условий эксплуатации электропривода схема управления питается пониженным стандартным напряжением от трансформатора ТС.
Схема позволяет осуществлять прямой пуск, реверс и остановку электропривода торможением противовключением с контролем по скорости. При этом в качестве чувствительного элемента используется электромеханическое реле контроля скорости SR, устанавливаемое на валу электродвигателя. Оно замыкает свои контакты SR(B) или SR(Н) при скорости SR0,01н.дв.
Управляющие команды подаются в схему кнопками управления SB2 («Вперёд»), SB3(«Назад») и SB1 («Стоп») в зависимости от требуемого по технологии направления вращения. Напряжение на обмотку статора подаётся контакторами КМ1(В), чередование фаз АВС, и КМ2(Н), чередование фаз СВА. Кнопка остановки электропривода SB1(C) включена в цепь катушки реле торможения КТ, которое организует режим торможения противовключения при любом направлении вращения. В цепях катушек контакторов КМ1(В) и КМ2(Н) находятся блокировочные контакты 5-6 (SB3), 6-7(KM2) и 12-13(SB2) 13-14(КМ1), предотвращающие одновременное срабатывание этих контакторов.
Рис.13.3. Схема реверсивного асинхронного электропривода с торможением противовключением
Управление электроприводом осуществляется следующим образом. При нажатии кнопки SB2-B образуется цепь питания катушки КМ1, контактор КМ1 срабатывает и подключает статорную обмотку асинхронного электродвигателя к питающей сети и происходит прямой пуск по характеристике, показанной на рис.4.19.
При срабатывании контактора КМ1-В замыкается контакт 4-5 (КМ1-В), шунтирующий кнопку SB2-В, и контактор становится на самопитание. Одновременно в цепи катушки КМ2-Н размыкается блокировочный контакт 13-14 (КМ-В), в цепи катушки реле торможения КТ замыкается контакт 3-15(КМ1-В). При разгоне электродвигателя срабатывает реле контроля скорости и замыкает свой контакт 11-13(SR-H), подготавливая схему к остановке электропривода, если будет нажата кнопка SB1-С("Стоп").
Для реверсирования электропривода нужно нажать кнопку SB3-Н. После этого размыкается блокирующий контакт 5-6(SB3) в цепи катушки КМ1. Контактор КМ1 отключает статор двигателя от питающей сети. Одновременно в цепи катушки КМ2 замыкается блокирующий контакт 13-14(КМ1). Катушка КМ2 получает питание, и контактор КМ2 подключает статорную обмотку к питающей сети, изменив чередование фаз. Магнитное поле электродвигателя начинает вращаться в противоположном направлении, а ротор по инерции вращается в прежнем направлении. Поэтому асинхронный двигатель переходит в режим торможения противовключением до полной остановки, а затем разгоняется в направлении «Назад». Этот процесс показан на рис.4.19. При разгоне «Назад» реле контроля скорости замыкает свой контакт 11-6(SR-B), подготавливая схему к остановке. В цепи катушки реле торможения КТ контактор замыкает 3-15(КМ2). При нажатии кнопки SB1-C катушка реле торможения КТ получает питание и реле КТ срабатывает, размыкая контакт 3-4(КТ) и замыкая контакт 3-11(КТ). Контактор КМ2 теряет питание и отключает статорную обмотку от питающей сети. При этом контактор КМ2 замыкает свой блокировочный контакт 6-7(КМ2) в цепи катушки КМ1. Контактор КМ1 срабатывает, так как катушка КМ1-В получает питание по цепи 3-1(КТ), 11-6(SR-H), 6-7(КМ2). Статорная обмотка подключается прямым чередованием фаз, «Вперёд», а ротор вращается по инерции в направлении «Назад». Поэтому асинхронный двигатель переходит в режим торможения противовключением. Тормозной момент электропривода в режиме торможения Мт=-(Мс-Мпв). Когда скорость снизится практически до нуля, реле контроля скорости SR разомкнёт свой контакт 3-11 (КТ) и катушка КМ1 потеряет питание, а контактор КМ1 отключит статорную обмотку от питающей сети.
В технологических установках применяются электроприводы с двухскоростными асинхронными электродвигателями, у которых ступенчатое регулирование скорости достигается за счёт изменения числа пар полюсов путём изменения схемы включения специально выполненной статорной обмотки (см.§4.4).
На рис.13.4 приведена схема нереверсивного электропривода с двухскоростным асинхронным двигателем. В схеме предусмотрено переключение статорной обмотки с треугольника на двойную звезду (/). Такая схема применяется в электроприводах механизмов, если по технологии требуется регулирование скорости с постоянной мощностью на рабочем органе. Механические характеристики электропривода по схеме рис.13.4 приведены на рис.4.21.
Управляющие команды в схему подаются трёхпозиционным командоконтроллером SM. В исходном положении, когда включены автоматы QF1 и QF2 и командоконтроллер находится в нулевом (левом) положении, срабатывает реле напряжения KV и своим контактом KV становится на самопитание.
Рис.13.4. Схема включения двухскоростного асинхронного двигателя
При переключении командоконтроллера в первое положение (НС) получает питание катушка контактора КМ1(НС), контактор срабатывает, замыкает свой контакт 3-6 в цепи катушки тормозного контактора КМТ и подключает статорную обмотку, включённую в треугольник (), к сети. В тоже время тормозной контактор КМТ срабатывает и подаёт питание на электромагнит тормоза, тормоз растормаживается (поднимаются колодки), и электродвигатель пускается на низкую скорость (число пар полюсов 2р).
При переключении командоконтроллера во второе положение (ВС) катушка контактора КМ1(НС) отключает статорную обмотку от сети. Катушки контакторов КМ2(ВС) и КМ3(ВС) получают питание и контакторы срабатывают. Контактор КМ3(ВС), замыкая свои контакты, образует нулевую точку двойной звезды. Контактор КМ2(ВС) замыкает свой контакт 3-6 в цепи катушки тормозного контактора КМТ, контактор КМТ срабатывает или остаётся включённым. Одновременно контактор КМ2(ВС) подключает вершину двойной звезды статорной обмотки и двигатель пускается на высокую скорость (число пар полюсов р), как показано рис.4.21. Чтобы остановить электропривод необходимо переключить командоконтроллер в нулевое положение. В этом случае контакторы теряют питание, статорная обмотка отключается от сети и контакты КМТ оказываются разомкнутыми. Контактор КМТ снимает питание с катушки электромагнитного тормоза, и тормозные колодки накладываются на тормозной барабан. Электропривод останавливается под действием момента сопротивления Мс и момента Ммт механического тормоза.
- Раздел II. Системы управления электроприводами
- Глава 13. Релейно-контакторное управление электроприводами
- 13.1. Защита в системах электропривода Защиты асинхронных электроприводов
- Защиты синхронных электроприводов
- Защиты электроприводов постоянного тока
- 13.2. Выбор силовых аппаратов управления
- 13.3. Принципы управления, используемые в релейно-контакторных схемах управления
- 13.4. Типовые схемы управления асинхронными электроприводами
- Глава 14. Принципы построения систем управления электроприводами
- 14.1. Основные понятия и определения