6.3. Выбор теплоносителя: водяные и паровые системы теплоснабжения.
Выбор теплоносителя и системы теплоснабжения определяется техническими и экономическими соображениями и зависит главным образом от типа источника теплоты и вида тепловой нагрузки. Рекомендуется максимально упрощать систему теплоснабжения. Чем система проще, тем она дешевле в сооружении и надежнее в эксплуатации. Наиболее простые решения дает применение единого теплоносителя для всех видов тепловой нагрузки.
Если тепловая нагрузка района состоит только из отопления, вентиляции и горячего водоснабжения, то при теплофикации применяется обычно двухтрубная водяная система. В тех случаях, когда кроме отопления, вентиляции и горячего водоснабжения в районе имеется также небольшая технологическая нагрузка, требующая теплоты повышенного потенциала, при теплофикации рационально применение трехтрубных водяных систем. Одна из подающих линий системы используется для удовлетворения нагрузки повышенного потенциала.
В тех случаях, когда основной тепловой нагрузкой района является технологическая нагрузка повышенного потенциала, а сезонная тепловая нагрузка невелика, в качестве теплоносителя применяется обычно пар.
При выборе системы теплоснабжения параметров теплоносителя учитываются технические и экономические показатели по всем элементам: источнику теплоты, сети, абонентским установкам. Энергетически вода выгоднее пара. Применение многоступенчатого подогрева воды на ТЭЦ позволяет повысить удельную комбинированную выработку электрической и тепловой энергии, благодаря чему возрастает экономия топлива. При использовании паровых систем вся тепловая нагрузка покрывается обычно отработавшим паром более высоко давления, отчего удельная комбинированная выработка электрической энергии снижается.
Паровые системы сооружаются двух типов: с возвратом конденсата и без возврата конденсата.
Системы с возвратом конденсата наиболее широко применяется. По прямой трубе передается пар, по обратной конденсат. Схема подачи пара на технологические нужды, как правило, на зависимой открытой схеме.
Если имеет место паровая технологическая нагрузка и ГВС, то применяется независимая схема с пароводяными подогревателями. Конденсат отводится конденсатоотводчиками в сборный резервуар и перекачивается обратно на станцию, сбор конденсата от теплопотребляющих установок и возврат его к источнику теплоты имеют важное значение для надежности работы котельных установок ТЭУ. Обычно обессоливающие установки ТЭУ дороги, поэтому мощность их ограничена. Кроме того,
невозврат конденсата требует дополнительного расхода химических реагентов и тепловой энергии.
Нередко пар после использования на технологические нужды сильно загрязняется. Загрязненный конденсат нельзя возвращать на ТЭУ. Однако его очистка не всегда экономически оправдана. Поэтому на промышленных предприятиях применяются иногда паровые системы без возврата конденсата (слив в канализацию). В этом случае упрощаются и удешевляются тепловая сеть, экономится электроэнергия на перекачку, не требуются затраты а конденсатопроводы. Но тепловую энергию конденсата в этом случае следует использовать для первой ступени системы ГВС.
Основные преимущества воды как теплоносителя по сравнению с паром:
1) большая удельная комбинированная выработка электрической энергии на базе теплового потребления;
2) сохранение конденсата на ТЭЦ, что имеет особенно важное значение для электростанций высокого давления;
3) возможность центрального регулирования однородной тепловой нагрузки или определенного сочетания разных видов нагрузки при одинаковом отношении расчетных грузок у абонентов, что упрощает местное регулирование;
4) более высокий КПД системы теплоснабжения вследствие отсутствия в абонентских установках потерь конденсата и пара, имеющих место в паровых системах;
5) повышенная аккумулирующая способность водяной системы.
Основные недостатки воды как тепло-носителя:
1) больший расход электроэнергии на закачку сетевой воды по сравнению с ее расходом на перекачку конденсата в паровых системах;
2) большая «чувствительность» к авариям, так как утечки теплоносителя из паровых сетей вследствие значительных удельных объемов пара во много (примерно 20—40) раз меньше, чем в водяных системах (при небольших повреждениях паровые сети могут продолжительно оставаться в работе, в то время как водяные системы требуют остановки);
3) большая плотность теплоносителя и жесткая гидравлическая связь между всеми точками системы.
По условиям удовлетворения теплового режима абонентских установок, определяемого средней температурой теплоносителя в абонентских теплообменниках, вода и пар могут считаться равноценными теплоносителями. Только в особых случаях, когда пар используется непосредственно для технологического процесса (обдувка, пропарка и т.д.), он не может быть заменен водой.
При теплоснабжении от котельных пар применяется и при тепловых нагрузках низкого потенциала.
Серьезное значение имеет правильный выбор параметров теплоносителя. При теплоснабжении от котельных рационально, как правило, выбирать высокие параметры теплоносителя, допустимые по условиям техники транспортировки теплоты по сети и использования ее в абонентских установках. Повышение параметров теплоносителя приводит к уменьшению диаметров тепловой сети и снижению расходов по перекачке (при воде). При теплофикации необходимо учитывать влияние параметров теплоносителя на экономику ТЭЦ.
Выбор водяной системы теплоснабжения закрытого или открытого типа зависит главным образом от условий водоснабжения ТЭЦ, качества водопроводной воды (жесткости, коррозионной активности, окисляемости) и располагаемых источников низкопотенциальной теплоты для горячего водоснабжения.
Обязательным условием как для открытой, так и для закрытой систем теплоснабжения является обеспечение стабильного качества горячей воды у абонентов в соответствии с ГОСТ 2874—73 «Вода питьевая». В большинстве случаев качество исходной водопроводной воды предопределяет выбор системы теплоснабжения.
Преимущественное применение каждой из рассматриваемых систем теплоснабжения определяется следующими показателями исходной водопроводной воды. При закрытой системе: индекс насыщения J > -0,5; карбонатная жесткость Жк < 1 мг-экв/л; (Cl + SO4) < 200 мг/л; перманганатная окисляемость не регламентируется.
При открытой системе: перманганатная окисляемость О < 4 мг/л; индекс насыщения, карбонатная жесткость, концентрация хлорида и сульфатов не регламентируются.
При повышенной окисляемости (O > 4 мг/л) в застойных зонах открытых систем теплоснабжения (радиаторы отопительных установок и др.) развиваются микробиологические процессы, следствие которых — сульфидное загрязнение воды. Так вода, отбираемая из отопительных установок для горячего водоснабжения, имеет неприятный сероводородный запах.
По энергетическим показателям и по начальным затратам современные двухтрубные закрытые и открытые системы теплоснабжения являются в среднем равноценными. По начальным затратам открытые системы имеют некоторые экономические преимущества при наличии на ТЭЦ источников мягкой воды, не нуждающейся в водоподготовке и удовлетворяющей санитарным требованиям к питьевой воде. При использовании открытых систем вода для горячего водоснабжения отбирается из тепловой сети, что, с одной стороны, разгружает сеть холодного водопровода и создает в ряде случаев дополнительные экономические преимущества, а с другой — часто вынуждает подводить к ТЭЦ магистральные водоводы, что увеличивает капитальные затраты. По эксплуатационным расходам открытые системы несколько уступают закрытым в связи с дополнительными затратами на водоподготовку. В эксплуатации открытые системы сложнее закрытых из-за нестабильности гидравлического режима тепловой сети, усложнения санитарного контроля плотности системы.
При дальней транспортировке теплоты в районах с относительно большой нагрузкой горячего водоснабжения при наличии вблизи ТЭЦ или котельной источников воды, удовлетворяющей санитарным требованиям, экономически оправдано применение открытой системы теплоснабжения с однотрубным (однонаправленным) транзитом, и двухтрубной распределительной сетью.
При суперсверхдальней транспортировке теплоты на расстояние порядка 100— 150 км и более целесообразно проверить экономичность применения химотермической системы передачи теплоты, т.е. транспортировки теплоты в химически связанном состоянии.
- Тема 6. Теплопотребление
- 6.2 Классификация систем теплоснабжения (рис.6.2.1, 6.2.2).
- 6.3. Выбор теплоносителя: водяные и паровые системы теплоснабжения.
- 6.4. Системы отопления.
- Технические характеристики
- 6.4 Системы горячего водоснабжения.
- 6.6. Сравнение открытых и закрытых систем теплоснабжения
- 6.7.Правила присоединения теплопотребителей к тепловой сети.
- Гл.3. Присоединение систем потребления теплоты к тепловым сетям
- 6.8. Сверхдальняя транспортировка теплоты
- 6.9. Системы регулирования централизованного теплоснабжения.
- 6.9.2. Комбинированное управление вентиляционной нагрузки
- 6.10. Автоматизированный тепловой пункт (атп).
- Описание технологического процесса.
- Порядок, примерные сроки и стоимость работ:
- Рекомендации по системам приточной вентиляции
- 6.11 Тепловые сети.
- 6.12 Гидравлические удары в водяных сетях.
- Варианты подбора основного оборудования модуля отопления.
- 7. Термоконтроллер «прамер-710».
- 7.1.Описание и работа.
- 7.1.1 Назначение
- 7.1.2Технические характеристики.
- 7.1.3.Устройство и работа контроллера.
- 7.1.4. Управление системой отопления.
- 7.1.4.1Принцип управления.
- 7.1.4.2Установка датчика температуры наружного воздуха.
- 7.1.4.3Установка датчика температуры воздуха в помещении.
- 7.1.4.4Установка датчика температуры подающего трубопровода (смеси).
- 7.1.4.5Установка датчика температуры обратного трубопровода.
- 7.1.4.6.Коррекция графиков отопления.
- 7.1.4.7. Коррекция графика подающего теплоносителя по критерию температуры обратного теплоносителя.
- 7.1.4.8Автоматическая настройка параметров теплоснабжения.
- 7.1.4.9Работа термоконтроллера по управлению исполнительным механизмом.
- 7.1.5 Алгоритм работы термоконтроллера.
- 7.1.6 Алгоритм управления контуром.
- 7.2. Управление настройкой и работой контроллера.
- 7.2.1Принципы управления контроллером.
- 7.2.2 Меню контроллера.
- 7.2.2.1.Задание системных параметров.
- 7.2.2.2 Задание базовых параметров.
- 7.2.2.3Настройка коррекции параметров системы.
- 7.2.2.4 Текущая эксплуатация.
- 7.2.2.5 Архив параметров.
- 7.2.2.6 Диагностика.
- 7.2.2.7 Пароль.
- 7.3.Использование по назначению.
- 7.3.1Калибровка температурных каналов контроллера.
- 7.3.2Требования к линиям связи с датчиками температуры и исполнительными механизмами.
- 7.3.3Подключение контроллера к сети переменного тока, дт и им.
- 7.3.4Техническое обслуживание.
- 8.Термопреобразователь с унифицированным токовым выходным сигналом тспу / 1 - 0289 Ех.
- 7. Список использованной литературы в приложении.
- 5. Алгоритм работы автоматизированного теплового пункта.