1.2. Однофазные выпрямители
Для выпрямления однофазного переменного тока применяются три типа выпрямителей: однополупериодный; двухполупериодный с выводом средней точки вторичной обмотки трансформатора и двухполупериодный мостовой.
Однофазная однополупериодная схема с трансформатором приведена на рис.1.1,а. Вентиль включен последовательно с нагрузочным резистором и вторичной обмоткой трансформатора.
Рассмотрим работу схемы при чисто активной нагрузке и идеальном вентиле. Ток в нагрузочном резисторе Rн появляется только в те полупериоды напряжения, когда потенциал точки "a" вторичной обмотки трансформатора положителен по отношению к потенциалу точки "b", так как в этом режиме вентиль открыт. Когда же потенциал точки "a" отрицателен по отношению к потенциалу точки "b", вентиль закрыт, и ток в цепи вторичной обмотки трансформатора равен нулю. Таким образом, ток в резисторе Rн имеет пульсирующий характер, т.е. появляется только в один из полупериодов напряжения. Поэтому данный выпрямитель называют однополупериодным. Временные диаграммы напряжений и токов однополупериодного выпрямителя изображены на рис.1.1,б. Среднее значение однополупериодного выпрямленного напряжения вычисляется по формуле
Uср = U2m/π.
Максимальное обратное напряжение на вентиле равно
Uобр.m = U2m.
Среднее значение тока вентиля
Iа.ср = Iср.
Недостатками однополупериодной схемы являются:
-большие пульсации в кривой выходного напряжения, создаваемые переменной составляющей напряжения;
-недостаточно эффективное использование трансформатора, необходимого для получения требуемой величины выпрямленного напряжения.
Поэтому однополупериодные выпрямители применяют сравнительно редко, обычно для питания цепей малой мощности, например, электронно-лучевых трубок.
Схема с выводом средней точки вторичной обмотки трансформатора представлена на рис.1.2,а, соответствующие временные диаграммы токов и напряжений изображены на рис.1.2,б.
Двухполупериодное выпрямление достигается в этой схеме выполнением трансформатора с двумя вторичными обмотками и выводом общей (средней или нулевой) точки этих обмоток. В качестве положительных для U2a и U2b обычно принимают направления, совпадающие с проводящими в вентилях. В тот полупериод, когда напряжение в обмотке "oa" положительно, ток пропускает вентиль V1 у которого анод положителен по отношению к катоду, связанному через сопротивление нагрузки Rн со средней (нулевой) точкой вторичной обмотки трансформатора. Полюс "b" обмотки "ob" в этот полупериод отрицателен по отношению к нулевому выводу, и, следовательно, вентиль V2 в этой части периода тока не пропускает. В следующий полупериод ток проходит через вентиль V2, а вентиль V1 заперт.
Среднее значение выпрямленного напряжения
Uср = 2U2/π
Максимальное обратное напряжение на вентиле равно двойной амплитуде фазного напряжения:
Uобр.m = 2U2m.
Среднее значение тока через вентиль (по условию симметрии)
Iа.ср = Iср/2.
Мостовая схема изображена на рис.1.3, а временные диаграммы токов и напряжений соответствуют рис.1.2,б.
Схема имеет структуру, аналогичную мосту Уитстона, в котором сопротивления заменены вентилями. К одной из диагоналей моста присоединена вторичная обмотка трансформатора, а к другой - сопротивление нагрузки. При необходимости мост может быть включен в сеть переменного тока и без трансформатора. Это является одним из преимуществ мостовой схемы.
Вентили включены так, что в один из полупериодов ток проходит через одну пару вентилей, а в другой полупериод он проходит через другую пару вентилей. Через сопротивление нагрузки Rн ток идет в течение всего периода в одном направлении. Через вторичную обмотку трансформатора протекает чисто переменный ток.
Среднее значение выпрямленного напряжения и тока через вентиль получается таким же, как и в предыдущей схеме. Максимальное обратное напряжение на вентиле равно амплитуде напряжения на вторичной обмотке трансформатора
Uобр.m = U2m.
Таким образом, максимальное обратное напряжение в мостовой схеме при одном и том же значении выпрямленного напряжения в два раза меньше, чем в схеме с нулевым выводом. В этом второе преимущество мостовой схемы.
Сравнение трех типов выпрямителей позволяет выявить их преимущества и недостатки. Двухполупериодные выпрямители более эффективны: средние значения выпрямленных токов и напряжений у них в два раза больше, а пульсации значительно меньше, чем у однополупериодных выпрямителей. Преимуществами однополупериодных выпрямителей являются простота конструкции и меньшая стоимость.
По причинам названным выше из двухполупериодных выпрямителей предпочтение отдают мостовым схемам. Недостатком мостовых схем является удвоенное количество вентилей.
- 1.1. Классификация и основные параметры выпрямителей
- 1.2. Однофазные выпрямители
- 1.3. Трехфазные выпрямители
- 1.4. Сглаживающие фильтры
- 1.5. Внешняя характеристика выпрямителя
- 1.6. Умножители напряжения
- 1.7. Стабилизаторы напряжения
- 1.8. Управляемые выпрямители
- 2. Усилители
- 2.1. Определение и классификация усилителей
- 2.2. Основные характеристики усилителей
- 2.3. Общие принципы работы электронных усилителей, динамические характеристики
- 2.4. Классы усиления электронных усилителей
- 2.5. Обратные связи в усилителях
- 2.6. Подача смещения на вход управляющего элемента
- 2.7. Температурная стабилизация режимов работы
- 2.8. Многокаскадные усилители
- 2.9. Усилители постоянного тока
- 3. Генераторы гармонических колебаний
- 3.1. Назначение и классификация электронных генераторов
- 3.2. Условия самовозбуждения автогенераторов
- 3.3. Lc-автогенераторы
- 3.4. Rc-автогенераторы
- 3.5. Использование операционных усилителей для построения автогенераторов гармонических колебаний
- 3.6. Стабилизация частоты автогенераторов