Аппаратура линий связи
Аппаратура передачи данных (АПД или DCE - Data Circuit terminating Equipment) непосредственно связывает компьютеры или локальные сети пользователя с линией связи и является, таким образом, пограничным оборудованием. Традиционно аппаратуру передачи данных включают в состав линии связи. Примерами DCE являются модемы, терминальные адаптеры сетей ISDN, оптические модемы, устройства подключения к цифровым каналам. Обычно DCE работает на физическом уровне, отвечая за передачу и прием сигнала нужной формы и мощности в физическую среду.
Аппаратура пользователя линии связи, вырабатывающая данные для передачи по линии связи и подключаемая непосредственно к аппаратуре передачи данных, обобщенно носит название оконечное оборудование данных (DTE - Data Terminal Equipment). Примером DTE могут служить компьютеры или маршрутизаторы локальных сетей. Эту аппаратуру не включают в состав линии связи.
Разделение оборудования на классы DCE и DTE в локальных сетях является достаточно условным. Например, адаптер локальной сети можно считать как принадлежностью компьютера, то есть DTE, так и составной частью канала связи, то есть DCE.
Промежуточная аппаратура обычно используется на линиях связи большой протяженности. Промежуточная аппаратура решает две основные задачи:
-
улучшение качества сигнала;
-
создание постоянного составного канала связи между двумя абонентами сети.
В глобальных сетях необходимо обеспечить качественную передачу сигналов на расстояния в сотни и тысячи километров. Поэтому без усилителей сигналов, установленных через определенные расстояния, построить территориальную линию связи невозможно. В глобальной сети необходима также и промежуточная аппаратура другого рода - мультиплексоры, демультиплексоры и коммутаторы. Эта аппаратура создает между двумя абонентами сети составной канал (высокоскоростной канал или уплотненный канал) из некоммутируемых отрезков физической среды - кабелей с усилителями.
Промежуточная аппаратура канала связи прозрачна для пользователя, он ее не замечает и не учитывает в своей работе. Для него важны только качество полученного канала, влияющее на скорость передачи дискретных данных. В действительности же промежуточная аппаратура образует сложную сеть, которую называют первичной сетью, так как сама по себе она никаких высокоуровневых служб (например, файловой или передачи голоса) не поддерживает, а только служит основой для построения компьютерных, телефонных или иных сетей.
В зависимости от типа промежуточной аппаратуры все линии связи делятся на аналоговые и цифровые. В аналоговых линиях промежуточная аппаратура предназначена для усиления аналоговых сигналов, то есть сигналов, которые имеют непрерывный диапазон значений. Такие линии связи традиционно применялись в телефонных сетях для связи АТС между собой. Для создания высокоскоростных каналов, которые мультиплексируют несколько низкоскоростных аналоговых абонентских каналов, при аналоговом подходе обычно используется техника частотного мультиплексирования (Frequency Division Multiplexing, FDM).
В цифровых линиях связи передаваемые сигналы имеют конечное число состояний. Как правило, элементарный сигнал, то есть сигнал, передаваемый за один такт работы передающей аппаратуры, имеет 2 или 3 состояния, которые передаются в линиях связи импульсами прямоугольной формы. С помощью таких сигналов передаются как компьютерные данные, так и оцифрованные речь и изображение. В цифровых каналах связи используется промежуточная аппаратура, которая улучшает форму импульсов и обеспечивает их ресинхронизацию, то есть восстанавливает период их следования. Промежуточная аппаратура образования высокоскоростных цифровых каналов (мультиплексоры, демультиплексоры, коммутаторы) работает по принципу временного мультиплексирования каналов (Time Division Multiplexing, TDM), когда каждому низкоскоростному каналу выделяется определенная доля времени (тайм-слот или квант) высокоскоростного канала.
Аппаратура передачи дискретных компьютерных данных по аналоговым и цифровым линиям связи существенно отличается, так как в первом случае линия связи предназначена для передачи сигналов произвольной формы и не предъявляет никаких требований к способу представления единиц и нулей аппаратурой передачи данных, а во втором - все параметры передаваемых линией импульсов стандартизованы. Другими словами, на цифровых линиях связи протокол физического уровня определен, а на аналоговых линиях - нет.
Физическая среда передачи данных может представлять собой кабель, т.е. набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны.
В зависимости от среды передачи различают следующие линии связи:
-
проводные (воздушные);
-
кабельные (медные и волоконно-оптические);
-
радиоканалы наземной и спутниковой связи;
-
инфракрасные лучи.
Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и висящие в воздухе. По таким линиям связи традиционно передают телефонные или телеграфные сигналы.
Кабельные линии представляют собой достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической, а также, возможно, климатической. В системах телекоммуникации и компьютерных сетях применяют три основных типа кабеля: кабели на основе скрученных пар медных проводов, коаксиальные кабели с медной жилой, волоконно-оптические кабели.
Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует много типов радиоканалов, отличающихся как используемым частотным диапазоном, так и дальностью связи. Диапазоны коротких, средних и длинных волн (KB, CB и ДВ), называемые также диапазонами амплитудной модуляции (AM - Amplitude Modulation) no типу используемого в них метода модуляции сигнала, обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, работающие на диапазонах ультракоротких волн (УКВ), для которых характерна частотная модуляция (FM - Frequency Modulation), а также на диапазонах сверхвысоких частот (СВЧ или microwaves). В диапазоне СВЧ (свыше 4 ГГц) сигналы уже не отражаются ионосферой Земли, и для устойчивой связи необходимо наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты используют либо спутниковые каналы, либо радиорелейные каналы, где это условие выполняется.
Инфракрасные беспроводные сети используют для передачи данных инфракрасные лучи. В подобных системах необходимо генерировать очень сильный сигнал, так как в противном случае значительное влияние будут оказывать другие источники.
-
Сети на рассеянном инфракрасном излучении. При этой технологии сигналы, отражаясь от стен и потолка, в конце концов достигают приемника. Эффективная область ограничивается примерно 30 м. Скорость передачи невелика (так как все сигналы отраженные).
-
Сети на отраженном инфракрасном излучении. В таких сетях оптические трансиверы, расположенные рядом с компьютером, передают сигналы в определенное место, из которого они транслируются соответствующему компьютеру.
-
Широкополосные оптические сети. Эти инфракрасные беспроводные сети предоставляют широкополосные услуги магистрали, соответствуют жестким требованиям мультимедийной среды. Такие сети подвержены помехам со стороны сильных источников света, которые есть в большинстве помещений.
- Содержание
- Компьютерные сети и их архитектура
- Основные понятия сети
- Архитектура распределенных систем
- Классификация сетей по способам распределения данных
- Эволюция вычислительных систем
- Конвергенция локальных и глобальных сетей.
- Конвергенция компьютерных и телекоммуникационных сетей
- Компьютерные сети - частный случай распределенных вычислительных систем
- Топология физических связей
- Адресация в ip-сетях
- Типы адресов стека tcp/ip
- Классы ip-адресов
- Особые ip-адреса
- Использование масок в ip-адресации
- Порядок распределения ip-адресов
- Автоматизация процесса назначения ip-адресов
- Отображение ip-адресов на локальные адреса
- Отображение доменных имен на ip-адреса Организация доменов и доменных имен
- Система доменных имен dns
- Связь двух компьютеров
- Методы передачи данных и Оборудование сетей
- Понятие системы передачи данных
- Математические модели сигналов
- Спектральный анализ сигналов на линиях связи
- Аппаратура линий связи
- Стандарты кабелей
- Оборудование локальных сетей
- Модель osi
- Общая характеристика модели osi
- Физический уровень
- Канальный уровень
- Функции канального уровня
- Сетевой уровень
- Транспортный уровень
- Сеансовый уровень
- Представительный уровень
- Прикладной уровень
- Сетезависимые и сетенезависимые уровни
- Стандартизация сетей
- Понятие "открытая система"
- Модульность и стандартизация
- Стандартные стеки коммуникационных протоколов
- Стек osi
- Стек tcp/ip
- Стек ipx/spx
- Стек NetBios/smb
- Коммутация и мультиплексирование
- Обобщенная задача коммутации
- Определение информационных потоков
- Определение маршрутов
- Оповещение сети о выбранном маршруте
- Продвижение — распознавание потоков и коммутация на каждом транзитном узле
- Мультиплексирование и демультиплексирование
- Разделяемая среда передачи данных
- Разные подходы к выполнению коммутации
- Коммутация каналов
- Коммутация пакетов
- Достоинства коммутации пакетов
- Недостатки коммутации пакетов
- Коммутация сообщений
- Сравнение способов коммутации
- Постоянная и динамическая коммутация
- Пропускная способность сетей с коммутацией пакетов
- Ethernet как пример технологии коммутации пакетов
- Основные достоинства технологии Ethernet
- Дейтаграммная передача
- Виртуальные каналы в сетях с коммутацией пакетов
- Маршрутизация
- Маршрутизаторы
- Классификация маршрутизаторов по областям применения
- Основные технические характеристики маршрутизатора
- .Дополнительные функциональные возможности маршрутизаторов
- Принципы маршрутизации
- Протоколы маршрутизации
- Функции маршрутизатора
- Уровень интерфейсов
- . Уровень сетевого протокола
- Уровень протоколов маршрутизации