logo
04-09-2015_19-17-13 (1) / Конспект лекций lll

Адресация в ip-сетях

Типы адресов стека TCP/IP

В стеке TCP/IP используются три типа адресов: локальные (называемые также аппаратными), IP-адреса и символьные доменные имена.

В терминологии TCP/IP под локальным адресом понимается такой тип адреса, который используется средствами базовой технологии для доставки данных в пределах подсети, являющейся элементом составной интерсети. В разных подсе­тях допустимы разные сетевые технологии, разные стеки протоколов, поэтому при создании стека TCP/IP предполагалось наличие разных типов локальных адресов. Если подсетью интерсети является локальная сеть, то локальный ад­рес — это МАС-адрес. МАС-адрес назначается сетевым адаптерам и сетевым интерфейсам маршрутизаторов. МАС-адреса назначаются производителями обо­рудования и являются уникальными, так как управляются централизованно. Для всех существующих технологий локальных сетей МАС-адрес имеет формат 6 байт, например 11-AO-17-3D-BC-01. Однако протокол IP может работать и над прото­колами более высокого уровня, например над протоколом IPX или Х.25. В этом случае локальными адресами для протокола IP соответственно будут адреса IPX и Х.25. Следует учесть, что компьютер в локальной сети может иметь несколько локальных адресов даже при одном сетевом адаптере. Некоторые сетевые устрой­ства не имеют локальных адресов. Например, к таким устройствам относятся глобальные порты маршрутизаторов, предназначенные для соединений типа «точ­ка-точка».

IP-адреса представляют собой основной тип адресов, на основании которых сетевой уровень передает пакеты между сетями. Эти адреса состоят из 4 байт, на­пример 109.26.17.100. IP-адрес назначается администратором во время конфигу­рирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произволь­но, либо назначен по рекомендации специального подразделения Internet (Internet Network Information Center, InterNIC), если сеть должна работать как составная часть Internet. Обычно поставщики услуг Internet получают диапазоны адресов у подразделений InterNIC, а затем распределяют их между своими абонентами. Но­мер узла в протоколе IP назначается независимо от локального адреса узла. Марш­рутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может вхо­дить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

Символьные доменные имена. Символьные имена в IP-сетях называются доменны­ми и строятся по иерархическому признаку. Составляющие полного символьного имени в IP-сетях разделяются точкой и перечисляются в следующем порядке: снача­ла простое имя конечного узла, затем имя группы узлов (например, имя организа­ции), затем имя более крупной группы (поддомена) и так до имени домена самого высокого уровня (например, домена объединяющего организации по географическо­му принципу: RU — Россия, UK — Великобритания, SU — США). Примеров домен­ного имени может служить имя base2.sales.zil.ru. Между доменным именем и .IP-адресом узла нет никакого алгоритмического соответствия, поэтому необходимо использовать какие-то дополнительные таблицы или службы, чтобы узел сети одно­значно определялся как по доменному имени, так и по IP-адресу. В сетях TCP/IP используется специальная распределенная служба Domain Name System (DNS), ко­торая устанавливает это соответствие на основании создаваемых администраторами сети таблиц соответствия. Поэтому доменные имена называют также DNS-именами.

Классы IP-адресов

IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, пред­ставляющих значения каждого байта в десятичной форме и разделенных точками, например, 128.10.2.30 — традиционная десятичная форма представления адреса, а 10000000 00001010 00000010 00011110 - двоичная форма представления этого же адреса.

Адрес состоит из двух логических частей — номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая — к номеру узла, определяется значениями первых бит адреса. Значения этих бит являются также признаками того, к какому классу относится тот или иной IP-адрес.

На рис. 5.9 показана структура IP-адреса разных классов.

Если адрес начинается с 0, то сеть относят к классу А и номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети. Сети класса А

имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей, о чем будет сказано ниже.) Сетей класса А немного, зато количество узлов в них может достигать 224, то есть 16 777 216 узлов.

Если первые два бита адреса равны 10, то сеть относится к классу В. В сетях класса В под номер сети и под номер узла отводится по 16 бит, то есть по 2 байта. Таким образом, сеть класса В является сетью средних размеров с максимальным числом узлов 216, что составляет 65 536 узлов.

Если адрес начинается с последовательности 110, то это сеть класса С. В этом случае под номер сети отводится 24 бита, а под номер узла — 8 бит. Сети этого класса наиболее распространены, число узлов в них ограничено 28, то есть 256 узлами.

Если адрес начинается с последовательности 1110, то он является адресом клас­са Dvi обозначает особый, групповой адрес — multicast. Если в пакете в качестве адреса назначения указан адрес класса D, то такой пакет должны получить все узлы, которым присвоен данный адрес.

Если адрес начинается с последовательности 11110, то это значит, что данный адрес относится к классу Е. Адреса этого класса зарезервированы для будущих применений.

В табл. 5.4 приведены диапазоны номеров сетей и максимальное число узлов, соответствующих каждому классу сетей.

Большие сети получают адреса класса А, средние — класса В, а маленькие класса С.

Особые IP-адреса

В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов.

• Если весь IP-адрес состоит только из двоичных нулей, то он обозначает адрес того узла, который сгенерировал этот пакет; этот режим используется только в некоторых сообщениях ICMP.

• Если в поле номера сети стоят только нули, то по умолчанию считается, что узел назначения принадлежит той же самой сети, что и узел, который отправил пакет.

• Если все двоичные разряды IP-адреса равны 1, то пакет с таким адресом назна­чения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такая рассылка называется ограниченным широковещатель­ным сообщением (limited broadcast).

• Если в поле номера узла назначения стоят только единицы, то пакет, имеющий такой адрес, рассылается всем узлам сети с заданным номером сети. Например, пакет с адресом 192.190.21.255 доставляется всем узлам сети 192.190.21.0. Такая рассылка называется широковещательным сообщением (broadcast).

При адресации необходимо учитывать те ограничения, которые вносятся осо­бым назначением некоторых IP-адресов. Так, ни номер сети, ни номер узла не может состоять только из одних двоичных единиц или только из одних двоичных нулей. Отсюда следует, что максимальное количество узлов, приведенное в табли­це для сетей каждого класса, на практике должно быть уменьшено на 2. Например, в сетях класса С под номер узла отводится 8 бит, которые позволяют задавать 256 номеров: от 0 до 255. Однако на практике максимальное число узлов в сети класса С не может превышать 254, так как адреса 0 и 255 имеют специальное назначение. Из этих же соображений следует, что конечный узел не может иметь адрес типа 98.255.255.255, поскольку номер узла в этом адресе класса А состоит из одних дво­ичных единиц.

Особый смысл имеет IP-адрес, первый октет которого равен 127. Он использу­ется для тестирования программ и взаимодействия процессов в пределах одной машины. Когда программа посылает данные по IP-адресу 127.0.0.1, то образуется как бы «петля». Данные не передаются по сети, а возвращаются модулям верхнего уровня как только что принятые. Поэтому в IP-сети запрещается присваивать ма­шинам IP-адреса, начинающиеся со 127. Этот адрес имеет название loopback. Мож­но отнести адрес 127.0.0.0 ко внутренней сети модуля маршрутизации узла, а адрес 127.0.0.1 — к адресу этого модуля на внутренней сети. На самом деле любой адрес сети 127.0.0.0 служит для обозначения своего модуля маршрутизации, а не только 127.0.0.1, например 127.0.0.3.

В протоколе IP нет понятия широковещательности в том смысле, в котором оно используется в протоколах канального уровня локальных сетей, когда данные долж­ны быть доставлены абсолютно всем узлам. Как ограниченный широковещатель­ный IP-адрес, так и широковещательный IP-адрес имеют пределы распространения в интерсети — они ограничены либо сетью, к которой принадлежит узел-источник пакета, либо сетью, номер которой указан в адресе назначения. Поэтому деление сети с помощью маршрутизаторов на части локализует широковещательный шторм пределами одной из составляющих общую сеть частей просто потому, что нет спо­соба адресовать пакет одновременно всем узлам всех сетей составной сети.

Уже упоминавшаяся форма группового IP-адреса — multicast означает, что данный пакет должен быть доставлен сразу нескольким узлам, которые образуют группу с номером, указанным в поле адреса. Узлы сами идентифицируют себя, то есть определяют, к какой из групп они относятся. Один и тот же узел может вхо­дить в несколько групп. Члены какой-либо группы multicast не обязательно долж­ны принадлежать одной сети. В общем случае они могут распределяться по совершенно различным сетям, находящимся друг от друга на произвольном количестве хопов. Групповой адрес не делится на поля номера сети и узла и обрабатывается маршру­тизатором особым образом.

Основное назначение multicast-адресов — распространение информации по схеме «один-ко-многим». Хост, который хочет передавать одну и ту же информацию мно­гим абонентам, с помощью специального протокола IGMP (Internet Group Management

Protocol) сообщает о создании в сети новой мультивещательной группы с определен­ным адресом. Машрутизаторы, поддерживающие мультивещательность, распростра­няют информацию о создании новой rpynnbi в сетях, подключенных к портам этого маршрутизатора. Хосты, которые хотят присоединиться к вновь создаваемой мульти­вещательной группе, сообщают об этом своим локальным маршрутизаторам и те пере­дают эту информацию хосту, инициатору создания новой группы.

Чтобы маршрутизаторы могли автоматически распространять пакеты с адресом multicast по составной сети, необходимо использовать в конечных маршрутизаторах модифицированные протоколы обмена маршрутной информацией, такие как, на­пример, MOSPF (Multicast OSPF, аналог OSPF ).

Групповая адресация предназначена для экономичного распространения в Internet или большой корпоративной сети аудио- или видеопрограмм, предназначенных сра­зу большой аудитории слушателей или зрителей. Если такие средства найдут широ­кое применение (сейчас они представляют в основном небольшие экспериментальные островки в общем Internet), то Internet сможет создать серьезную конкуренцию ра­дио и телевидению.

Использование масок в IP-адресации

Традиционная схема деления IP-адреса на номер сети и номер узла основана на понятии класса, который определяется значениями нескольких первых бит адреса. Именно потому, что первый байт адреса 185.23.44.206 попадает в диапазон 128-191, мы можем сказать, что этот адрес относится к классу В, а значит, номером сети являются первые два байта, дополненные двумя нулевыми байтами — 185.23.0.0, а номером узла — 0.0.44.206.

А что если использовать какой-либо другой признак, с помощью которого мож­но было бы более гибко устанавливать границу между номером сети и номером узла? В качестве такого признака сейчас получили широкое распространение мас­ки. Маска — это число, которое используется в паре с IP-адресом; двоичная запись маски содержит единицы в тех разрядах, которые должны в IP-адресе интерпрети­роваться как номер сети. Поскольку номер сети является цельной частью адреса, единицы в маске также должны представлять непрерывную последовательность.

Для стандартных классов сетей маски имеют следующие значения:

• класс А - 11111111. 00000000. 00000000. 00000000 (255.0.0.0);

• класс В-11111111.11111111.00000000. 00000000 (255.255.0.0);

• класс С-11111111.11111111.11111111.00000000 (255.255.255.0).

ПРИМЕЧАНИЕ Для записи масок используются и другие форматы, например, удобно интерпретировать значение маски, записанной в шестнадцатеричном коде: FF.FF.OO.OO — маска для адресов класса В. Часто встречается и такое обозначение 185.23.44.206/16 - эта запись говорит о том, что маска для этого адреса содержит 16 единиц или что в указанном IP-адресе под номер сети отведено 16 двоичных разрядов.

Снабжая каждый IP-адрес маской, можно отказаться от понятий классов адре­сов и сделать более гибкой систему адресации. Например, если рассмотренный выше адрес 185.23.44.206 ассоциировать с маской 255.255.255.0, то номером сети будет 185.23.44.0, а не 185,23.0.0, как это определено системой классов.

В масках количество единиц в последовательности, определяющей границу но­мера сети, не обязательно должно быть кратным 8, чтобы повторять деление адреса на байты. Пусть, например, для IP-адреса 129.64.134.5 указана маска 255.255.128.0, то есть в двоичном виде:

IP-адрес 129.64.134.5 - 10000001. 01000000. 10000110. 00000101

Маска 255.255.128.0- 11111111.11111111. 10000000.00000000

Если игнорировать маску, то в соответствии с системой классов адрес 129.64.134.5 относится к классу В, а значит, номером сети являются первые 2 байта — 129.64.0.0, а номером узла — 0.0.134.5.

Если же использовать для определения границы номера сети маску, то 17 по­следовательных единиц в маске, «наложенные» на IP-адрес, определяют в качестве номера сети в двоичном выражении число:

10000001. 01000000. 10000000. 00000000 или в десятичной форме записи — номер сети 129.64.128.0, а номер узла 0.0.6.5.

Механизм масок широко распространен в IP-маршрутизации, причем маски могут использоваться для самых разных целей. С их помощью администратор мо­жет структурировать свою сеть, не требуя от поставщика услуг дополнительных номеров сетей. На основе этого же механизма поставщики услуг могут объединять адресные пространства нескольких сетей путем введения так называемых «пре­фиксов» с целью уменьшения объема таблиц маршрутизации и повышения за счет этого производительности маршрутизаторов.