logo search
подготовка автоматика

1.Термометры сопротивления : устройство , пд область применения

Термометр сопротивления представляет собой измерительное устройство, состоящее из термопре­образователя сопротивления (ТС), электроизмерительного прибора и проводов, соединяю­щих их между собой в единое целое. Термометры сопротивления широ­ко применяются во всех отрас­лях пищевой промышленности для измерения температуры в достаточно широком диапазоне (от —100 и ниже и до +650°С).

Термопреобразователи сопротивления

Измерение температуры с помощью термопреобразователей сопротивления (ТС) основано на ис­пользовании зависимости элек­трического сопротивления чувствительного элемента от температуры:

R = f(t).Вид этой функции зависит от природы материала термопреобра­зователя сопротивления. Для изго­товления металлических ТС при­меняются только чистые металлы, отвечающие следующим ос­новным требованиям:

1. Нейтральность к измеряемой среде.

2. Высокий и неизменный температурный коэффициент электри­ческого сопротивления для металлов, используемых в ТС, температурные коэффициен­ты принято определять в интер­вале. 0—100°С (в 1/°С):

3. Изменение сопротивления с изменением температуры по пря­мой или плавной кривой без резких отклонений и гистерезиса, т. е. монотонная зависимость сопротивления от температуры.

4. Большое удельное электрическое сопротивление.

Указанным требованиям в определенных температурных интер­валах отвечают платина, медь, ни­кель, вольфрам и железо. ТС мо­гут изготовляться из полупроводниковых материалов. Преимуществомполупроводниковых термопреобразователей сопротивления — терморезисторов — является боль­шой температурный коэффициент сопротивления [(Зч-4) 10~2 1/°С], вследствие чего из них можно изготовлять ТС малых размеров, а следовательно, с малой тепловой инерцией. Их недостат­ками является плохая воспроизводимость параметров, что затрудняет взаимозаменяемость, а также возможность измерять температуру только до 250—300° С. Промышлен­ностью выпускается не­сколько типов терморезисторов, постоянная времени которых от 10 до 100 с. В настоящее время выпускаются две большие группы металли­ческих стандартных термопреобразо­вателей сопротивления: плати­новые и медные. Платиновые предназначены для измере­ния темпе­ратуры от —260 до +650° С, медные — от —50 до +100° С. Плати­новые ТС выпуска­ются двух модификаций: одинарные и двойные. В двойных в одну арматуру вмонтированы два эле­мента, не связанные электрически друг с другом. Медные ТС выпускаются толь­ко одинарными. Чувствительные элементы широко распространенных платиновых ТС представляют собой двух - или четырехканальный керамический каркас, в каналы которого укладываются платиновые спирали из проволоки (0,1 мм), закрепляемые в них глазурью. Для увеличения механической прочности и умень­шения тепловой инерции ТС пространство между стенками каналов и спиралями засыпается спе­циальным порошком из алюминия. Существуют также конструкции с многослойной намоткой платиновой проволоки, изолированной винифлексовым лаком, с намоткой проволоки на кера­мический каркас в виде «звездочки» и др. Для защиты от повреж­дений элементы ТС помещают в защит­ные чехлы (трубки). Элементы медных ТС изготовляются из эмалированной прово­локи диаметром 0,08—0,1 мм, много­слойно безындукционно намо­танной на цилиндрический пластмассовый стержень. Выводы дела­ются из медной проволоки диаметром 1,0—1,5 мм. Элемент поме­щается в защитную стальную трубку. Наружная арматура ТС, так же как и арматура термоэлектрических преоб­разователей, состоит из защитной трубы, подвижного или неподвижного штуцера для крепления и головки, в которой помеща­ется контактная колодка с зажимами для проводов, соединяющих ТС с измерительным устройством термометра сопро­тивления. Защит­ная труба в зависимости от назначения изготовляется из углеро­дисто1 или нержавеющей стали. Имеется ряд конструкций защитной арматуры ТС. В пищевой промышленности применяются общепромышленные термопреобра­зователи сопротивления в соответствующей защитной арматуре, однако ряд типов ТС изготовляется специально для использования в пищевой промышлен­ности: для шприц-машин и шприц-прессов, холодильных установок, рефрижера­торов и т. п.

Если сопротивление термометра сопротивления вследствие нагрева возрастает, то вращающий момент рамки Rp будет больше момента рамки Rp, так как , и подвижная система начнет поворачиваться по часовой стрелке, т.е. в направлении момента . При этом рамка с большим вращающим моментом попадет в более слабое магнитное поле и ее момент уменьшится, момент же рамки ,наоборот, будет увеличиваться . При определенном угле поворота моменты сравняются и рамки остановятся.

Основным недостатком рассмотренной дифференциальной логометрической схемы является то, что для уменьшения температурной погрешности прибора приходится включать последовательно с рамками манганиновые резисторы с большими сопротивлениями и . Вследствие этого логометры с такой измерительной цепью обладают меньшей чувствительностью по сопротивлению по сравнению с приборами с мостовыми логометрическими схемами.

УРАВНОВЕШЕННЫЕ МОСТЫ.

В качестве измерительных приборов, применяемых в комплекте с ТС, широко используются урав­новешенные мосты и логометры, а в некоторых случаях — неуравновешенные мосты.

Уравновешенные мосты. Принципиальная электрическая проводов Rпр. В одну диагональ включен источник постоянного тока Е, в другую — нуль-прибор НП. схема уравновешенного моста (рис1) состоит из постоянных резисторов R1 и R2, компенсирующего переменного резистора (реохорда) RP, термопреобразователя сопротивления Rt и сопротивления соединительных Измерение Rt производится путем перемещения движка реохорда RP до тех пор, пока стрелка нуль-прибора не установится на нулевой отметке. В этот момент ток в измерительной диагонали cd отсутствует.

Если считать, что температура окружающей среды постоянна, то 2Rпр = const. Тогда каждому значению Rt соответствует определенное значение сопротивления реохорда RP, шкала которого проградуирована либо в Омах, либо в единицах неэлектрической величины (например, в градусах Цельсия), для измерения которой предназначена схема.

В случаях, когда колебания температуры окружающей среды велики и погрешность за счет изменения RПР может достигать значительной величины, применяется трехпроводная схема включения термопреобразователя сопротивления (рис 2). При таком соединении сопротивление одного провода прибавляется к сопротивлению Rt, а сопротивление второго провода — к переменному сопротивлению RP. в трехпроводной схеме сопротивление соединительных проводов не влияет на результаты измерения при равенстве R1=R2.

Используются, в основном, для контроля вспомогательных процессов энергоснабжения.