51.Структурная схема и основная схема дискретного вывода
Вывод дискретных сигналов используется для управления состоянием включено/выключено исполнительных устройств. Устройства вывода отличаются большим многообразием. Знание структуры выходных каскадов необходимо для правильного их применения.
Выходные каскады со стандартными ТТЛ или КМОП логическими уровнями в промышленной автоматизации используются редко. Это связано с тем, что нагрузкой дискретных выходов являются не логические входы электронных устройств, а чаще всего электромеханические реле, пускатели, шаговые двигатели и др. Дискретные выходы обычно строятся на основе мощных биполярных транзисторов с открытым коллектором или полевых транзисторов (обычно МОП) с открытым стоком (рис. 6.32). С точки зрения схемотехники применения эти каскады эквивалентны, поэтому мы будем их называть "каскады ОК". Каскады с ОК обеспечивает большую гибкость, позволяя получить необходимые для нагрузки ток или напряжения с помощью внешнего источника питания. Кроме того, каскад ОК с помощью внешних резисторов и источников напряжения позволяет получить стандартные КМОП или ТТЛ уровни (рис. 6.32).
Наилучшим решением для построения дискретных выходов являются микросхемы интеллектуальных ключей, которые содержат в себе не только мощный транзистор с открытым стоком, но и цепи его защиты от перегрузки по току, напряжению, короткого замыкания, переполюсовки и перегрева, а также электростатических разрядов. При перегреве выходного каскада или превышения тока нагрузки интеллектуальный ключ выключается.
Наиболее широко распространены выходные каскады ОК модулей вывода двух типов: для втекающего тока (рис. 6.34) и вытекающего (рис. 6.35). Различие между ними состоит в том, какой вывод является общим для нескольких нагрузок: заземленный или соединенный с шиной питания.
Каскады с открытым коллектором (стоком) удобны тем, что позволяют использовать внешний источник питания с напряжением, отличным от напряжения питания модулей вывода (рис. 6.34, рис. 6.35). Кроме того, в этих схемах вместо источника питания можно использовать тот же источник, что и для питания модулей вывода ( ).
Для управления нагрузками, питающимися большим током или от источника напряжения 110...220 В используют выходные каскады с электромагнитными или твердотельными (полупроводниковыми) реле, тиристорами, симисторами.
Основным достоинством электромагнитных реле является очень низкое падение напряжения на замкнутых контактах, что исключает необходимость их охлаждения. Недостатком является ограниченное количество срабатываний (порядка ). Полупроводниковые реле, наоборот, имеют относительно большое сопротивление в открытом состоянии и требуют отвода тепла, но могут выполнить до переключений. Кроме того, полупроводниковые реле обладают более высокой надежностью и не имеют эффекта "дребезга контактов".
- 11.1 Основные понятия и определения автоматического управления.
- 11.2 Основные понятия и определения автоматического управления.
- 19. Преобразование Лапласа, его основные свойства и методика использования при анализе переходных процессов в аср. Передаточные функции элементов и систем.
- 52. Методы измерений.
- 59. Динамические свойства объектов управления.
- 32 Структурная схема увк
- 31 Расходомеры переменного перепада давления и тахометрические расходомеры: устройство, принцип, достоинства и недостатки
- 30 Влияние и составляющей закона регулирования на качество переходных процессов аср
- 29 Расходомеры постоянного перепада давления. Индукционные расходомеры: устройство, принцип действия, область применения
- 28 Влияние д составляющей закона регулирования на качество переходных процессов аср(на примере пд регулятора)
- 37 Структура распределенной асутп
- 46 Электрические исполнительные механизмы: электродвигательные и электромагнитные
- 54 Ультразвуковые расходомеры, устройство, принцип действия, достоинства и недостатки
- 16. Регуляторы прямого действия: кустройство, пд и область применения.
- 18.Термометры расширения:устр-во , пд и область применения.
- 1.Термометры сопротивления : устройство , пд область применения
- 7. Расходомеры
- 8. Влияние п-состовляющей закона регулирования на качество переходных процессов аср.
- 3. Назначение и пд потенциометрических и дифференциально-трансформаторного передающих преобразователей.
- 25. Назначение и пд электросилового и электропневматического преобразователей.
- 26. Порядок выбора типа автоматического регулятора и определение его настроечных параметров.
- 24. Термопреобразователи сопротивления:устройство, пд. Источники возникновения погрешностейпри измерении температуры термометрами сопротивления и методы их компенсации.
- 6. Уровнемеры и сигнализаторы уровня:устройства ,пд. Источники возникновения погрешности и способы их компенсации.
- 42. Цап(Цифро-аналоговый преобразователь) :схема , пд.
- 33. Преобразователи температуры: классификация, области применения.
- 24. Принцип действия термоэлектрических преобразователей
- 9. Статистика и динамика аср. Способы получения уравнений динамики, линейные системы. Линеаризация характеристик реальных элементов.
- 10. Милливольтметры, потенциометры - назначение, принцип действия.
- 56. Устойчивость аср. Критерий устойчивости Гурвица
- 2.Логические элементы: и, или, не.
- 41. Структурная схема увк (Управляющий вычислительный комплекс)
- 36.38 Структурные схемы устройств дискретного ввода и вывода информации.
- 44. Цель и задачи автоматизации.
- 48. Служба ответственности за авт-цию, их ф-ции.
- 5. Элементы метрологии.
- 27. Деформационные манометры
- 55.Расходомер Кориолиса: подробно простым языком
- 12. Структурные схемы соединения типовых звеньев и их преобразование
- 15. Исполнительные механизмы
- 21. Статика и динамика аср
- 22. Логометры, уравновешенные мосты
- 40. Ацп: схема , принцип действия
- 47. Погрешности измерений
- 50.Программирование логические контроллеры(плк)
- 53.Метрологические характеристики
- 57. Регулирующие органы
- 4. Позиционные аср: характер переходных процессов, показатели качества, область применения
- 13.Манометрические термометры…
- 14.Многоконтурные аср….
- 20.Функциональная структура и классификация измерительных устройств.
- 23.Объекты регулирования и их классификация
- 45.Автоматические регуляторы….
- 49.Определение и общая структура scada
- 51.Структурная схема и основная схема дискретного вывода
- 58. Жидкостные манометры, принцип действия, преимущества, недостатки.
- 3 4. Структурная схема цифровой системы управления на основе контроллера.
- 35. Логический элемент и-не,или-не . Rs-триггер
- 36. Структурная схема устройств аналогового ввода информации
- Апериодический переходной процесс с минимальным временем регулирования:
- 60. Структурная схема и функция устройства аналогового вывода
- 39.1. Первичные измерительные преобразователи
- 39.2. Первичные измерительные преобразователи