logo search
Линейная ТАУ

2.7. Передаточная функция

Наряду с обыкновенными дифференциальными уравнениями в теории автоматического управления используются различные их преобразования. Для линейных систем эти уравнения удобнее записывать в символической форме с использованием так называемого оператора дифференцирования

,

что позволяет преобразовывать дифференциальные уравнения как алгебраические и ввести новую динамическую характеристику - передаточную функцию.

Рассмотрим этот переход для многоканальных систем вида (2.6)

Запишем уравнение состояния в символической форме:

px = Ax + Bu ,

что позволяет определить вектор состояния

(2.24)

и выходные переменные системы

(2.25)

Матрица взаимосвязи между выходными переменными и управляющими воздействиями в выражении (2.25) при нулевых начальных условиях называется матричной передаточной функцией и обозначается

(2.26)

(2.26)

Она представляет собой матрицу со следующими компонентами:

(2.27)

где - скалярные передаточные функции, которые представляют собой отношение выходной величины к входной в символической форме при нулевых начальных условиях

Собственными передаточными функциями i-го канала называются компоненты передаточной матрицы , которые находятся на главной диагонали. Составляющие, расположенные выше или ниже главной диагонали, называются передаточными функциями перекрестных связей между каналами.

Обратная матрица находится по выражению

(2.28)

где - присоединенная матрица. Как следует из (2.28), все скалярные передаточные функции, которые являются элементами передаточной матрицы (2.27), содержат одинаковый знаменатель - det(pI-A). Он называется характеристическим полиномом и имеет n-ый порядок.

Если теперь характеристический полином приравнять нулю, то получим характеристическое уравнение системы,

A(p) = det(pI-A) = 0.

(2.29)

Пример 2.6.

Определить передаточную матрицу для объекта

где

Воспользуемся выражением для передаточной матрицы (2.27) и найдем предварительно обратную матрицу (2.29). Здесь

Транспонированная матрица имеет вид

a det(pI-A) = p -2p+1, .

где - транспонированная матрица. В результате получим следующую обратную матрицу:

и передаточную матрицу объекта

Чаще всего передаточные функции применяются для описания одноканальных систем вида

(2.30)

Используя оператор дифференцирования, запишем уравнение (2.30) в символической форме и найдем передаточную функцию как отношение выходной величины к входной:

,

(2.31)

где - характеристический полином.

Передаточные функции принято записывать в стандартной форме:

,

(2.32)

где - коэффициент передачи;

Передаточную матрицу (передаточную функцию) можно также определить с помощью изображений Лапласа или Карсона-Хевисайда. Если подвергнуть одному из этих преобразований обе части дифференциального уравнения и найти соотношения между входными и выходными величинами при нулевых начальных условиях, то получим ту же самую передаточную матрицу (2.26) или функцию (2.31).

Для того, чтобы в дальнейшем различать преобразования дифференциальных уравнений, будем использовать следующие обозначения:

- оператор дифференцирования;

- оператор преобразования Лапласа.

Получив одну из динамических характеристик объекта, можно определить все остальные. Переход от дифференциальных уравнений к передаточным функциям и обратно осуществляется с помощью оператора дифференцирования p.

Рассмотрим взаимосвязь между переходными характеристиками и передаточной функцией. Выходная переменная находится через импульсную функцию в соответствии с выражением (2.10),

Подвергнем его преобразованию Лапласа,

,

и получим y(s) = g(s)u(s). Отсюда определим импульсную функцию:

(2.33)

Таким образом, передаточная функция - есть преобразование по Лапласу от импульсной функции.

Пример 2.7.

Определить передаточную функцию объекта, дифференциальное уравнение которого имеет вид

Используя оператор дифференцирования d/dt = p, запишем уравнение объекта в символической форме

на основании которого определим искомую передаточную функцию объекта