1.3.2. Выпрямительные диоды
Выпрямительные свойства полупроводниковых диодов характеризуются рядом параметров, определяющих токи и напряжения в прямом и обратном направлениях. Эти параметры определяются вольт-амперной характеристикой (ВАХ) диода [8] (рис. 1.8).
Прямая ветвь ВАХ диода характеризуется следующими основными параметрами: - прямое падение напряжения на диоде, обусловленное прямым током,или- пороговое напряжение или порог выпрямления диода [6].
Обратная ветвь ВАХ диода характеризуется следующими основными параметрами: - обратное напряжение, приложенное к диоду в обратном направлении,- обратный ток диода, обусловленный приложенным обратным напряжением,- пробивное напряжение диода – значение обратного напряжения, вызывающего пробой перехода диода.
Рис. 1.8. Типовая вольт-амперная характеристика выпрямительного диода.
Выпрямительные свойства диодов тем лучше, чем меньше прямое падение напряжения при заданном прямом токе и чем меньше обратный ток при заданном обратном напряжении.
Наклон касательной АБ на рис. 1.8 определяет динамическое сопротивление диода в прямом направлении [8]:
(1.5)
Прямая ветвь ВАХ выпрямительного диода характеризуется также дифференциальным сопротивлением [8]:
представляющим собой отношение малого приращения прямого напряжения диода () к малому приращению прямого тока () в нем при заданном режиме по току в прямом направлении.
Необходимо отметить, что на прямой ветви ВАХ диода, построенной в полулогарифмических координатах, могут существовать участки, связанные с различными механизмами образования тока. Там, где ВАХ экспоненциальна, в данной системе координат получается прямолинейный отрезок [10].
На рис. 1.9 приведены ВАХ выпрямительных диодов средней мощности серии 6F(R) (производитель IRF) [11]. Очевидно, что динамическое и дифференциальное сопротивления диода, определенные на разных участках реальной ВАХ, будут различными.
Рис. 1.9. ВАХ выпрямительных диодов серии 6F(R).
При расчете необходимо определять внутреннее сопротивление диода исходя из заданного режима работы вентиля по току в прямом направлении.
При расчете и моделировании схем, включающих в себя полупроводниковые диоды, ВАХ диода идеализируют, представляя ее линейной ломаной кривой вида [6]: 1 - идеальный вентиль, 2 – идеализированный вентиль с потерями или 3 - идеализированный вентиль с потерями и порогом выпрямления (рис. 1.10).
а) б)
Рис. 1.10. Реальная ВАХ диода (а) и варианты ее идеализации (б).
Порог выпрямления кремниевых диодов лежит в пределах 0,4 – 0,8 В, а германиевых – 0,15 – 0,2 В. Для низковольтных выпрямителей (выпрямленное напряжение менее 10 В) порог выпрямления кремниевых вентилей составляет заметную часть выходного напряжения, его следует учитывать при выборе схемы выпрямления и при расчетах, выбирая в качестве расчетной модель вентиля с порогом выпрямления. Для выпрямителей с выходным напряжением более 10 В можно проводить расчет и на основе модели вентиля без порога выпрямления [6].
При обратном напряжении вентиль пропускает хотя и малый, но отличный от нуля обратный ток. Этим током, как правило, пренебрегают.
Угол наклона спрямленной характеристики вентиля с потерями определяет внутреннее сопротивление вентиля . Значения сопротивлений, применяемых в настоящее время вентилей, составляют от единиц (слаботочные диоды) до долей Ом (сильноточные диоды).
- Расчет и моделирование выпрямителей Учебное пособие по курсу
- Борисов п.А., Томасов в.С.Расчет и моделирование выпрямителей. Учебное пособие по курсу “Элементы систем автоматики” (ЧастьI) . – сПб: сПб гу итмо, 2009 – 169c.
- Глава 1. Общие принципы построения выпрямительных устройств
- Структурная схема и классификация выпрямителей
- 1.2. Основные схемы выпрямления Однофазная, однополупериодная схема
- Двухполупериодная схема со средней точкой (схема Миткевича)
- Мостовая схема (схема Греца)
- Трехфазная нулевая (схема звезда-звезда)
- Трехфазная мостовая схема (схема Ларионова)
- 1.3. Определение основных параметров и выбор элементов выпрямителя
- 1.3.1. Определение параметров схемы замещения трансформатора
- 1.3.2. Выпрямительные диоды
- 1.3.3. Выбор вентилей выпрямительного устройства
- 1.4. Фильтры Классификация сглаживающих фильтров
- Коэффициенты фильтрации и сглаживания фильтра
- Расчет г-образного индуктивно-емкостного фильтра
- Рекомендации по выбору фильтров
- Индуктивный фильтр
- Емкостной фильтр
- 1.5. Особенности применения электролитических конденсаторов в выпрямительных устройствах
- Глава 2. Методики анализа и расчета выпрямителей
- 2.1. Анализ работы выпрямителя гармонического напряжения при нагрузке, начинающейся с емкостного элемента
- 2.2. Примеры расчета выпрямителя с емкостным фильтром
- 2.3. Расчет выпрямителей при нагрузке, начинающейся с индуктивного элемента
- 2.3.1. Выпрямитель гармонического напряжения при нагрузке, начинающейся с индуктивного элемента
- 2.3.2. Методика расчета выпрямителя при нагрузке, начинающейся с индуктивного элемента
- 2.4. Пример расчета выпрямителя при нагрузке, начинающейся с индуктивного элемента
- Глава 3. Моделирование электротехнических устройств в пакете matlab приложение Simulink
- 3.1. Основной инструментарий приложения Simulink
- 3.1.1. Запуск системы matlab и приложения Simulink
- 3.1.2. Состав библиотеки Simulink
- 3.1.3. Измерительные блоки библиотеки Simulink (приемники сигналов Sinks). Настройка осциллографа Scope.
- 3.1.4. Создание собственных измерительных блоков в Simulink. Блок измерения углов отсечки вентилей.
- 3.2. Моделирование электротехнических устройств в SimPowerSystems
- 3.2.1. Назначение и особенности библиотеки SimPowerSystems
- 3.2.2. Разделы библиотеки SimPowerSystems
- 3.2.3. Источники электрической энергии Electrical Sources
- 3.2.4. Электротехнические элементы Elements
- 3.2.5. Особенности моделирования трансформаторных схем
- 3.2.6. Измерительные устройства Measurements
- 3.2.7. Модели полупроводниковых ключевых элементов в SimPowerSystems
- Глава 4. Моделирование выпрямительных устройств
- 4.1. Примеры моделирования выпрямителя с емкостным фильтром
- 4.18. Вариант модели мостового выпрямителя для параметрического анализа.
- 4.19. Программа параметрического анализа выпрямительного устройства.
- Литература
- Содержание
- Глава 1. Общие принципы построения выпрямительных устройств ....
- Глава 2. Методики анализа и расчета выпрямителей ........................
- Глава 3. Моделирование электротехнических устройств в пакете matlab приложение Simulink .....................................................
- Глава 4. Моделирование выпрямительных устройств в пакете
- История развития электротехнического образования в институте точной механики и оптики.