34. Тиристор
Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости.
Тиристор можно рассматривать как электронный выключатель (ключ). Основное применение тиристоров — управление мощной нагрузкой с помощью слабых сигналов, а также переключающие устройства. Существуют различные виды тиристоров, которые подразделяются, главным образом, по способу управления и по проводимости. Различие по проводимости означает, что бывают тиристоры, проводящие ток в одном направлении (например тринистор, изображённый на рисунке) и в двух направлениях (например, симисторы, симметричные динисторы).
Тиристор имеет нелинейную вольтамперную характеристику (ВАХ) с участком отрицательного дифференциального сопротивления. По сравнению, например, с транзисторными ключами, управление тиристором имеет некоторые особенности. Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора). После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала, если протекающий через тиристор ток превышает некоторую величину, называемую током удержания.
Устройство и основные виды тиристоров
Основная схема тиристорной структуры показана на рис. 1. Она представляет собой четырёхслойный полупроводник структуры p-n-p-n, содержащий три последовательно соединённых p-n-перехода J1, J2, J3. Контакт к внешнему p-слою называется анодом, к внешнему n-слою — катодом. В общем случае p-n-p-n-прибор может иметь до двух управляющих электродов (баз), присоединённых к внутренним слоям. Подачей сигнала на управляющий электрод производится управление тиристором (изменение его состояния). Прибор без управляющих электродов называется диодным тиристором или динистором. Такие приборы управляются напряжением, приложенным между основными электродами. Прибор с одним управляющим электродом называют триодным тиристором или тринистором[1] (иногда просто тиристором, хотя это не совсем правильно). В зависимости от того, к какому слою полупроводника подключён управляющий электрод, тринисторы бывают управляемыми по аноду и по катоду. Наиболее распространены последние.
Описанные выше приборы бывают двух разновидностей: пропускающие ток в одном направлении (от анода к катоду) и пропускающие ток в обоих направлениях. В последнем случае соответствующие приборы называются симметричными (так как их ВАХ симметрична) и обычно имеют пятислойную структуру полупроводника. Симметричный тринистор называется также симистором или триаком (от англ. triac). Следует заметить, что вместо симметричных динисторов, называемых также диаками (от англ. diac), часто применяются их интегральные аналоги, обладающие лучшими параметрами.
Тиристоры, имеющие управляющий электрод, делятся на запираемые и незапираемые. Незапираемые тиристоры, как следует из названия, не могут быть переведены в закрытое состояние с помощью сигнала, подаваемого на управляющий электрод. Такие тиристоры закрываются, когда протекающий через них ток становится меньше тока удержания. На практике это обычно происходит в конце полуволны сетевого напряжения.
Рис. 1. Схемы тиристора:
a) Основная четырёхслойная p-n-p-n-структура
b) Диодный тиристор
с) Триодный тиристор.
- 2.Электронные устройства
- Устройство и применение
- 3.Синхронная машина
- Устройство
- Принцип действия Двигательный принцип
- Генераторный режим
- Разновидности синхронных машин
- 5. Электропривод
- 6. Полупроводники́
- Механизм электрической проводимости полупроводников
- Энергетические зоны
- Подвижность
- Виды полупроводников По характеру проводимости Собственная проводимость
- Примесная проводимость
- По виду проводимости Электронные полупроводники (n-типа)
- Дырочные полупроводники (р-типа)
- 7. Трансформа́тор
- 9. Импульсный источник питания
- 10. Машина постоянного тока
- Принцип действия
- Электродвигатель
- Генератор
- 11.Стабилитрон
- Структура усилителя
- Классификация Аналоговые усилители и цифровые усилители
- Виды усилителей по элементной базе
- Виды усилителей по типу нагрузки
- 13. Реле управления
- Устройство и принцип действия
- Генераторы гармонических колебаний
- Устройство и применение
- 19.Оптоэлектронные устройства
- 21. Однофазные выпрямители Однополупериодный выпрямитель (четвертьмост)
- Полумост
- Полный мост (Гретца)
- Схемы включения полевых транзисторов
- Транзисторы с управляющим p-n переходом
- Транзисторы с изолированным затвором (мдп-транзисторы)
- 23. Основные понятия об интегральных схемах (аналоговые и цифровые)
- 24. Трехфазные трансформаторы
- 25. Усилители постоянного тока.
- 26. Цифровые логические элементы и логические операции.
- 27. Триггеры
- 28. Основные понятия об операционных усилителях и их применении.
- 29. Стабилизаторы напряжения.
- 30. Сглаживающие фильтры.
- 31. Расчет электропривода.
- 32. Электропроводимость полупроводников.
- 33. Электронно-дырочный переход и его свойства.
- 34. Тиристор
- Вольтамперная характеристика тиристора
- 35. Структурная схема и основные параметры электронного выпрямителя.
- 36. Трансформаторы в различных режимах.
- Режимы работы трансформатора
- 37. Мультивибраторы.
- Ждущие мультивибраторы Моностабильный (одностабильный) мультивибратор
- Бистабильный мультивибратор
- 38. Транзисторные и диодные ключи.
- Диодные ключи
- 39. Основные элементы и параметры усилительного каскада.
- 40. Режимы работы усилительных каскадов.
- 41. Многокаскадные усилители.
- 42. Выходные каскады. Обратные связи в усилителях.
- Обратные связи в усилителях
- 43. Формирователи импульсных сигналов.
- 44. Классификация полупроводниковых приборов.
- 45)Полупроводниковые резисторы и диоды
- Типы диодов по назначению
- 4 6) Биполярные транзисторы. Коэффициенты усиления в транзисторах
- 47) Фотодиоды и светодиоды
- 48) Схемы включения биполярных транзисторов
- 49) Тиристоры
- 50) Однофазные выпрямители
- Однополупериодный выпрямитель (четвертьмост)
- 51) Трехфазные выпрямили
- Три четвертьмоста параллельно (схема Миткевича)
- Три разделённых полумоста параллельно (три «с удвоением напряжения» параллельно) Три полумоста параллельно, объединённые кольцом/треугольником («треугольник-Ларионов»)
- Три полумоста параллельно, объединённые звездой («звезда-Ларионов»)
- Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича параллельно (6 диодов)
- Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича последовательно (6 диодов)
- Т ри полных моста параллельно (12 диодов)
- Три полных моста последовательно (12 диодов)
- 52) Управляемые выпрямители
- 53) Электронные усилители
- 54) Классификация электронных усилителей
- 55) Основные элементы и параметры усилительного каскада
- 5 6) Режимы работы усилительных каскадов
- 57) Усилительный каскад с оэ, ок, об
- 58) Многокаскадные усилители
- 59) Выходные каскады (однотактные, двухтактные, с трансформаторной и бестрансформаторной связью)
- 60) Обратные связи в усилителях
- 61) Усилители постоянного тока
- 62) Компаратор сигналов
- 63) Масштабирующий и интегрирующий усилитель
- 64) Электронные генераторы с lc-контуром и rc-контуром
- 65) Электронные ключи
- Неуправляемые
- Управляемые
- 66) Основные сведения об импульсных устройствах и импульсах
- 67) Ограничители импульсов
- 68) Генераторы линейно-изменяющего напряжения
- Учитывая, что
- 86. Двигатели для электропривода