4.1 Оперативные запоминающие устройства статического типа
Техника БИС развивается, в первую очередь, по пути повышения степени интеграции цифровых схем с регулярной структурой. Наибольшего успеха в этом направлении достигнуто для БИС с МОП структурами. Различают статические ОЗУ на n - МОП - структурах и К - МОП - структурах.
На рисунке 4.1 показаны схемы ячеек ОЗУ статического типа на n-МОП транзисторах. Схемы ячеек рисунок 4.1 а), б) предназначены для ЗУ со словарной организацией. Схемы ячеек рисунок 4.1 в), г) обеспечивают построение ЗУ с координатной произвольной выборкой.
Рисунок 4.1 – Схемы ячеек ЗУ статического типа, выполненных на МОП– транзисторах с n-каналами
На рисунке 4.2 а) показана ячейка КМОП ОЗУ со словарной выборкой, а на рисунке 4.2 б) с координатной.
Рисунок 4.2 – Схемы ячеек ЗУ статического типа, выполненных на МОП–транзисторах n и p-типа (комплементарная МОП-структура – КМОП)
В обоих случаях ячейка ЗУ содержит триггер, являющийся элементом памяти и управляющие ключи для выбора ячейки, записи и считывания информации. Так как энергопотребление КМОП - ячеек гораздо ниже, чем n-МОП, то уровень интеграции, достигаемый в КМОП ОЗУ существенно выше уровня n-МОП.
В практикуме предлагается изучить микросхему ОЗУ КМОП типа КР537РУ10 (2816). Эта микросхема содержит 2048 восьмиразрядных слов оперативной памяти (см. справочник по микросхемам). На рисунке 4.3 показана блок-схема ОЗУ КР537РУ10 (2816).
А – адресная шина;
D – двунаправленная шина данных;
DCx – дешифратор строк;
DCy – дешифратор столбцов.
Рисунок 4.3 – Структурная схема микросхемы статической памяти КР537РУ10
Микросхема содержит матрицу-накопитель емкостью 2048*8 бит. Выбор каждого из 2048 слов осуществляется с помощью дешифраторов строк DCx и столбцов DCy матрицы соответственно. Микросхема может работать в трех режимах: режим считывания, режим записи и режим хранения.
Режим работы определяется сигналами, подаваемыми на входы схемы управления согласно временной диаграмме, показанной на рисунке 4.4.
В режиме хранения микросхема КР537РУ10 (2816) характеризуется весьма низким энергопотреблением (не более 20 мкА).
А - сигналы адресной шины;
D - сигналы шины данных;
СЕ, СО – строб-сигналы записи – считывания;
W – сигнал разрешения записи – считывания.
Рисунок 4.4 – Временные диаграммы записи и считывания данных микросхемы КР537РУ10
- Введение
- 1 Практикум "Логические элементы"
- 1.1 Резисторно-транзисторные логические элементы
- 1.2 Диодно-транзисторные логические элементы
- 1.3 Транзисторно-транзисторные логические элементы
- 1.4 Комплементарные логические элементы на основе транзисторов "металл-окись-полупроводник"
- 1.5 Контрольные вопросы
- 1.6 Краткое описание учебного лабораторного стенда "Цифровая электроника"
- 1.7 Порядок выполнения практикума
- 1.8 Определение статической передаточной характеристики (спх) логических элементов
- 1.8.1 Построение первым способом
- 1.8.2 Построение вторым способом
- 1.9 Определение постоянных времени, фронтов и длительности входных и выходных логических сигналов
- 1.10 Определение среднего времени распространения логического сигнала
- 1.11 Содержание отчета
- 1.12 Условно-графические и буквенно-цифровые обозначения логических элементов
- 2 Практикум "Комбинационные логические схемы"
- 2.1 Дешифраторы
- 2.2 Мультиплексоры
- 2.3 Сумматоры
- 2.4 Контрольные вопросы
- 2.5 Порядок выполнения практикума
- 3.1.2 Универсальные двухступенчатые триггеры
- 3.2 Регистры
- 3.2.1 Накапливающие регистры
- 3.2.2 Сдвигающие регистры
- 3.3 Счетчики
- 3.4 Контрольные вопросы
- 3.5 Порядок выполнения практикума
- 3.6 Содержание отчета
- 3.7 Условно-графические и буквенно-цифровые обозначения триггерных устройств
- 4 Практикум "Запоминающие устройства"
- 4.1 Оперативные запоминающие устройства статического типа
- 4.2 Оперативные запоминающие устройства динамического типа
- 4.3 Программируемые постоянные запоминающие устройства с однократной записью информации
- 4.4 Перепрограммируемые постоянные запоминающие устройства с возможностью стирания ультрафиолетовым излучением
- 4.5 Контрольные вопросы
- 4.6 Оснащение практикума
- 4.7 Описание программатора
- 4.8 Порядок выполнения практикума
- 4.9 Условно-графические и буквенно-цифровые обозначения микросхем запоминающих устройств
- 5 Практикум "Управляющие устройства"
- 5.1 Практикум "Конечный автомат с жесткой логической структурой"
- 5.1.1 Таблицы переходов
- 5.1.2 Матрицы переходов
- 5.1.3 Диаграммы переходов
- 5.1.4 Автоматные уравнения
- 5.1.5 Синтез конечных автоматов
- 5.1.6 Пример реализации автомата с жесткой логической структурой
- 5.1.7 Контрольные вопросы
- 5.1.8 Порядок выполнения практикума
- 5.1.9 Содержание отчета
- 5.2 Практикум "Микропрограммный автомат"
- 5.2.1 Пример реализации микропрограммного автомата
- 5.2.2 Контрольные вопросы
- 5.2.3 Задание для практикума
- 5.2.4 Порядок выполнения практикума
- 6.1.1 Содержание практикума
- 6.1.2 Порядок проведения практикума
- 6.2 Практикум "Шины передачи данных"
- 6.2.1 Содержание практикума
- 6.2.2 Выполнение практикума
- 6.2.3 Контрольные вопросы
- 7 Практикум "Аналого-цифровые преобразователи и цифро-аналоговые преобразователи"
- 7.1 Практикум "Цифро-аналоговые преобразователи"
- 7.1.1 Структура и алгоритм работы цап
- 7.1.2 Порядок выполнения практикума
- 7.1.3 Контрольные вопросы к практикуму
- 7.2 Практикум "Аналого-цифровые преобразователи"
- 7.2.1 Структурные схемы и принципы действия ацп
- 7.2.2 Порядок выполнения практикума
- 7.2.3 Контрольные вопросы к практикуму
- Список использованных источников