Конструктивное оформление микросхем
Конструктивное оформление микросхем весьма разнообразно. Бескорпусные микросхемы применяют в качестве компонентов других (гибридных) герметизированных микросхем. Большинство микросхем изготавливают в корпусах, необходимых для защиты от
внешних механических и климатических воздействий при монтаже, а также от эксплуатационных механических, климатических, электрических, тепловых и других факторов. Наибольшее распространение получили DIP (Dual In-line Package) корпуса микросхем с жесткими внешними выводами: в пластмассовом (рис.1, а) и и металлокерамическом (рис.1, б) вариантах, в которых выводы расположены в два ряда с шагом 2,5 мм.
Рис. 1. Корпуса микросхем типа а - пластмассовый; б- металлокерамический
При миниатюризации РЭС важнейшей характеристикой корпуса микросхемы стало расстояние между выводами, поскольку для реализации возможностей созданных кристаллов микросхем число выводов должно быть 100 и более. В корпусах типа DIP возможно разместить только 64 вывода: при большем числе выводов снижаются электрические характеристики микросхемы, резко возрастает занимаемая микросхемой площадь на плате печатного монтажа, снижается устойчивость к внешним эксплуатационным воздействиям. Были разработаны корпуса с шагом выводов 1,25 мм: SO -двухрядные; QFP - квадратные плоские; PLCC - пластмассовые квадратные (рис. 2).
Рис. 2. Совершенствование корпусов микросхем
Однако при малом шаге выводов усложняется технологический процесс установки выводов корпусов в отверстия печатных плат. Технологии монтажа микросхемы на поверхность отвечают корпуса типов TQFP; BQFP; SSOP; TSOP; HD-QFP; FQFP; VQFP. Выводы корпусов с шагом 0,4 мм требуют использования в автоматах сборки систем технического зрения для проверки компланарности выводов и центровки корпуса на посадочное место, что повышает стоимость сборочных операций. Совершенствование корпусов микросхем достигается применением матрицы с шариковыми выводами (корпус типа BGA), переходом на многокристальные модули (МКМ), установкой кристалла на плату без корпуса (технология СОВ), креплением кристалла на ленточном носителе (технология ТАВ).
Шаг между выводами менее 0,5 мм требует жесткого соблюдения требований компланарности, поскольку отклонение от нормального положения хотя бы одного вывода приводит к отказу узла РЭС.
- Москва 2007
- Введение
- 1. Основные термины и определения.
- Контрольные вопросы.
- 2. Конструкторско-технологическая иерархия эвс
- Контрольные вопросы:
- 3. Резисторы электронных устройств (эу).
- Маркировка и условное графическое обозначение резисторов
- Основные технические характеристики резисторов
- Конструкция резисторов и используемые материалы
- Особенности применения резисторов
- Применение полупроводниковых резисторов
- Контрольные вопросы
- 4. Конденсаторы эу.
- Классификация конденсаторов
- Маркировка и условное графическое обозначение конденсаторов
- Основные электрические характеристики конденсаторов
- Конструкция конденсаторов и используемые материалы
- - Прямочастотная;
- Полипропиленовые конденсаторы
- Полиэтилентерефталатные конденсаторы
- Поликарбонатные конденсаторы
- Лакопленочные конденсаторы
- Комбинированные конденсаторы
- Особенности применения конденсаторов
- Контрольные вопросы
- 5. Устройства отображения информации
- Сегментные индикаторы
- Матричные индикаторы
- Система параметров индикаторов
- Светоизлучательные диоды
- Сегментные индикаторы
- Матричные индикаторы
- Жидкокристаллические индикаторы
- Вакуумные люминесцентные индикаторы
- Индикаторы на элт
- Газоразрядные индикаторы, плазменные панели
- Накальные индикаторы
- Электролюминесцентные индикаторы
- Электрохромные и электрофорезные индикаторы
- Электрофорезные индикаторы
- Сравнение различных типов индикаторов и перспективы их развития
- Заключение
- Контрольные вопросы
- 6.Устройства функциональной микроэлектроники
- Конструктивное оформление микросхем
- Функциональные компоненты
- Компоненты функциональной оптоэлектроники
- Функциональные приборы на жидких кристаллах
- Функциональные приборы с зарядовой связью
- Тестовые вопросы
- Вопросы