Тиристоры.
Это полупроводниковые приборы с 3 и более p-n, которые предназначены для использования в качестве электрических ключей в схемах коммутации больших по величине токов при, сравнительно, невысоком быстродействии. В зависимости от числа выводов и способов управления тиристоры делятся:
1 ) Денистор –“диодный транзистор”. При малом Uaл он находится в закрытом состоянии. При достижении Uак=Uвкл переключается в открытое состояние.
2) Тиристор – “триодный транзистор”. Тиристор не проводит ток в обратном направлении. Включается при прямом напряжении на аноде, при подаче импульса тока в цепь управляющего электрода.
3 ) Запираемый тиристор. В исходном состоянии открыт, запирается при подаче импульса тока на управляющий электрод.
4) Симметричный тиристор. Является эквивалентом двух встречно-параллельно соединённых тиристоров. Пропускает ток как прямого так и обратного направления. Включается при подаче тока в цепь управляющего электрода.
Принцип работы и ВАХ тиристоров.
Т иристор представляет собой четырёхслойную p-n-p-n-структуру. Если Jуэ=0, то прибор называется денистором.
На анод денистора обычно подается положительное напряжение относительно анода, а поэтому 3 p-n перехода тиристора называются эмитерным переходом № 1, коллекторным переходом и эмитерным переходом №2.
Участки ВАХ:
I. ЭП1 и ЭП2 смещены в прямом направлении, КП в обратном. Через транзистор ток не протекает – закрытое состояние тиристора. возвращает падение напряжения на всех переходах. Через переходы П1 и П3 начинают протекать малые прямые токи, за счёт чего слегка возрастает .
II. При Решим (*): Это неустойчивое состояние денистора, сопровождается переключением из непроводящего в проводящее.
III. Проводящее состояние.
IV. Соответствует запертому состоянию диода. Это непроводящее, неуправляемое состояние денистора. При достаточно большом Uобр возможен тепловой пробой денистора.
Работу тиристора описывают следующим выражением:
(*)
где – коэффициент передачи ЭП1
- коэффициент передачи ЭП2
где и зависят от прямого напряжения на эмиттерных переходах. При некоторых , то есть резко возрастает – сопротивление уменьшается.
Положительное напряжение подаваемое на позволяет управлять , что в свою очередь позволяет регулировать напряжение включения.
Для выключения тиристора необходимо выполнить одно из двух условий:
1)
2)
Тиристоры имеют дополнительный управляющий электрод, обычно он соединен с базой 2. Создание тока в цепи управляющего электрода позволяет коэффициентом передачи 2-ой базы, а тем самым управлять Uвкл.
О ни обычно используются в регуляторах мощности, при этом наиболее часто в цепях переменного тока, т.к. в цепях постоянного тока тиристор дважды за период переходит в непроводящее состояние. Задача схемы управления регулятора мощности на тиристоре: включать его в нужные полупериоды входного сигнала.
Недостатком тиристора в регуляторе мощности является невозможность использования для выделения при отрицательной полуволне питающего напряжения. Этот недостаток устраняется в симисторах.
Основные параметры тиристора.
1)
2) – величина напряжения на тиристоре, находящегося во включённом состоянии.
3) - ток удержания. При протекании через тиристор тока меньше этой величины тиристор выключается.
4) – максимально возможный ток протекаемый через тиристор(превышение разрушает тиристор).
5) – максимально допустимый ток протекаемый через тиристор.
6) Uвкл.”уэ”
7) Jобр(Uобр)
8) tвкл., tвыкл. – характеризуют быстродействие.
- Токи в полупроводниках. Дрейф и диффузия.
- Полупроводниковые диоды.
- Генератор гармонических колебаний на туннельном диоде.
- Принцип работы биполярного транзистора и соотношение для его токов.
- Основные соотношения токов в транзисторе.
- Основные параметры физической схемы замещения.
- Зависимость параметров и характеристик от температуры, частоты, и рабочей точки транзистора.
- Предельно допустимые параметры транзистора.
- Статистические вах n-канального полевого транзистора с управляющим p-n-переходом.
- Маркировка транзисторов.
- Тиристоры.
- Маркировка тиристоров.
- Усилители электрических сигналов.
- 5. Амплитудная характеристика усилителя.
- 6. Искажения сигналов в усилителях.
- Кпд усилителя.
- Классификация усилителей.
- Многокаскадные усилители.
- Режимы работы усилительного элемента.
- Усилительный каскад на бт.
- Усилители с обратной связью.
- Влияние отрицательной обратной связи на параметры и характеристики усилителя.
- Типы обратной связи.
- 2. Схема с оэ.
- Эмитерный повторитель.
- Усилитель с rc связью.
- Параметры усилителя в области средних частот.
- Частотная коррекция в области низких частот с использованием частотно-зависимого сопротивления коллекторной цепи.
- Коррекция в области высоких частот с использованием частотно-зависимых элементов в коллекторной цепи.
- Избирательные усилители.
- Избирательные усилители с частотно-зависимыми обратными связями (rc-избирательные усилители).
- Усилители мощности.
- Классификация усилителей мощности.
- Влияние выбора рт на кпд и кни.
- Безтрансформаторные усилители мощности.
- Усилители мощности с трансформаторной связью
- Усилители постоянного тока (упт).
- У пт с преобразованием входного сигнала.
- Структурная схема операционного усилителя.
- Анализ устройств, содержащих оу.
- Компараторы напряжений.
- Инвертирующий компаратор.
- Неинвертирующий компаратор с пос.
- Быстродействие компаратора с пос.
- Мультивибратор на оу.
- Источники питания.
- Структурная схема стабилизатора параллельного типа.
- Импульсы источника питания.
- Импульсные устройства.
- Мультивибратор
- Счетчики
- Регистр
- Дешифратор
- Аналогово-цифровые преобразователи.
- Ацп последовательного счёта.
- Ацп последовательного приближения.
- Ацп параллельного типа.
- Цифро-аналоговые преобразователи.