Импульсные устройства.
Широко применяемыми узлами электронной техники и систем обработки информации являются импульсные устройства, которые могут быть выполнены как на аналоговых, так и на цифровых микросхемах (МС). Они используются в аналоговых вычислительных машинах (АВМ), в блоках управления, ввода и вывода цифровых ЭВМ, в телеметрической, радионавигационной аппаратуре, в системах автоматического регулирования и управления.
Импульсные устройства (ИУ) предназначены для формирования и преобразования электрических сигналов, имеющих характер импульсов и перепадов напряжений (потенциалов) или тока, а также для управления информацией, предоставленной упомянутыми сигналами.
Применение импульсного способа передачи информации обусловлено рядом причин: большинство технологических процессов имеют дискретный (тактовый) характер (пуск, останов, срабатывание защиты и т.д.), передача информации в виде импульсов позволяет снизить потребляемую мощность; повышается помехоустойчивость, точность и надежность электронных устройств, т.к. информация передается в виде кодового набора импульсов и существенным является только наличие или отсутствие импульса.
Н аиболее часто применяются импульсы прямоугольной формы (рис.1).
Они характеризуются следующими параметрами:
Um- амплитуда импульса;
tИ - длительность импульса;
tП - длительность пауз между импульсами;
ТП- период повторения импульсов;
f = 1/ ТП - частота повторения импульсов;
Q = ТП / tП - скважность импульсов.
Реальный прямоугольный импульс имеет определенную длительность фронта tФ (время нарастания от 0,1 до 0,9 Um) и среза tC. Обычно tФ и tC << tИ , поэтому приближенно можно считать tФ = tФ = 0.
Т.к. прямоугольный импульс представляет перепад низкого и высокого потенциальных уровней, его можно представить изменением двоичного числа 0 и 1 или логического уровня Н (низкий) и В (высокий). Для работы с такими дискретными сигналами предназначены цифровые интегральные микросхемы (ЦИМС). Основой для их построения являются электронные ключи. Они могут находиться в одном из двух состоянии: В(1) и Н(0). Их действие заключается в переходе из одного состояния в другое под воздействием входных логических сигналов. По функциональному назначению ЦИМС подразделяются на подгруппы: логические элементы (ЛЭ), триггеры, одно вибраторы, мультивибраторы, элементы арифметических и дискретных устройств и др. В зависимости от схемотехнической реализации ЦИМС делятся на следующие типы: транзисторной логики (ТЛ), диодно-транзисторной логики (ДТП), транзисторно-транзисторной логики (ТТЛ), транзисторной логики на МОП-транзисторах (МОП ТЛ). К основным параметрам ЦИМС относятся:
- входное и выходное напряжения логического 0;
- входное и выходное напряжения логической 1;
- время задержки при включении – интервал времени между входным и выходным импульсами при переходе от к и другие.
Численные значения параметров зависят от типа используемых серий ЦИМС. Например, для серии К155 более 0,4 В, не менее 2,4 В, не более 1,6 мА, не более 0,04 мА.
Д ля анализа и синтеза ЦИМС широко применяется аппарат алгебры логики. Основным понятием последней является понятие "высказывание" - некоторое предложение, о котором можно утверждать, что оно истинно или ложно. Любое высказывание можно обозначить символом Х и считать, что Х=1, если высказывание истинно и Х=0 если высказывание ложно. Логическая переменная - такая величина X, которая может принимать только два значения: 0 или 1. Логическая функция у = f (Х1, Х2,…,Хn) как и ее аргументы (Х1, Х2,…,Хn) может принимать значения 0 или 1. При технической реализации логических функций логические переменные Х1, Х2,…,Хn отождествляются с входными сигналами логических элементов, а значения функции у = f (Х1, Х2,…,Хn) - с выходными сигналами.
Функция у = f1 (X), повторяющая значение переменной - тождественная, а функция у = f2 (X), противоположная значениям Х -логическое отрицание (НЕ) f2(X)= . Она реализуется логическим элементом НЕ (рис.2а), представляющим собой инвертирующий ключ. Дизъюнкция (логическое сложение "ИЛИ") - функция у = f3 (Х1, Х2) = (может также обозначаться у = f3 (Х1, Х2) = X1 +X2 истинно, когда истинны или Х1 или Х2, или обе переменные. Обозначение см. рис.2б).
Конъюнкция (логическое сложение, "И") - у = f4 (Х1, Х2) = X1 X2 (может также обозначаться у = f4 (Х1, Х2) = X1 X2 истинна только тогда, когда истинны Х1 и Х2. Обозначение рис. 2в).
Логические элементы "И" или "ИЛИ" обладают свойством двойственности, т.е. один и тот же элемент в зависимости от используемой логики (положительной или отрицательной) может выполнять функции либо элемента "И", либо "ИЛИ" т.е. если логический элемент реализует функцию "ИЛИ" при положительной логике, то он одновременно может реализовать функцию "И" при отрицательной логике.
В таблице 1 представлены состояния переключательной функции у = f (Х1, Х2) при различных сочетаниях значений логических переменных Х1 X2. Эта таблица называется таблицей истинности.
Таблица 1
С остояние функции у = fK(Х1, Х2)
П ереключательная функция у составляется на основании таблицы истинности. Например, для функции "И-НЕ" можно сформулировать словесно: "Функция у истинна (равна 1), когда истинны не Х1 и не Х2 (1-я строка), или не Х1 и Х2 (2-я строка) или Х1 и не X2 (3-я строка). Заменив слова не, и, или на соответствующие знаки логических операций получим:
(1)
Если создавать устройство непосредственно реализующее эту функцию, потребуется структура, представленная на рис. 3. Однако эту структуру можно упростить, минимизировав выражение (1) на основе тождеств алгебры логики:
А+А = А (2) АА = А (6) (10)
А+ = 1 (3) А = 0 (7) А+АВ+АС = А (11)
А+0 = А (4) А0 = 0 (8) А+ = А+В (12)
А+1 = 1 (5) А1 = А (9) (13)
(14)
Выносим в выражении ( 1) за скобки и используем тождество (3) и (9):
y = + + = ( + )+ = 1+ = +
Обозначим = А и воспользуемся тождеством (12), (13):
А+ =A+ = + =
Получилось, что выражение (1) реализуется с помощью одного элемента И-НЕ. При проектировании логических элементов стремятся использовать ограниченную номенклатуру логических элементов. В частности любое устройство может быть реализовано исключительно на элементах "И-НЕ" (или "ИЛИ/НЕ"). Так операция "НЕ" может быть реализована элементом "И-НЕ", в котором на каждом из входов переменная X. Тогда у = = . Схема представлена на рис.4а. Операция "ИЛИ" реализуется следующим образом: . Схема устройства - на рис.4б. Операция "И" реализуется: Х1Х2 = . Использовано тождество (10). Схема – рис.4в.
Следует отметить, что входной сигнал воспринимается логическим элементом на уровне 0 только в том случае, если протекает ток с входа МС во внешнюю цепь. Если к входу ничего не подключено ("висит в воздухе"), нет пути для протекания тока через вход и данное положение воспринимается также, как если бы на вход был подан сигнал 1. Схема внутренних элементов логической ячейки И-НЕ представлена на рис.5.
2. ТРИГГЕРЫ
Триггером называется устройство, имеющее два устойчивых состояния. При отсутствии внешних воздействий триггер может сколь угодно находиться в одном из устойчивых состояний. Входной сигнал может перевести триггер из одного устойчивого состояния в другое. Триггеры могут выполнять функции реле, переключателей, элементов памяти. Обычно триггеры имеют один или несколько управляющих входов и два выхода: основной ( Q ) и инверсный ( ).
Триггеры могут быть асинхронными и синхронными (тактируемыми). В асинхронном триггере информация на выходе изменяется одновременно с изменением входной информации. В синхронных - только в моменты действия тактового (синхронизирующего) импульса. При отсутствии тактового импульса состояние триггера остается неизменным несмотря на изменение информации на входе.
Триггеры выполняются на отдельных стандартных (базовых) интегральных логических элементах одной и той же серии. По этому принципу обычно строят RS -триггеры и простые D - триггеры. Более сложные JК- триггеры, Т-триггеры изготовляют в виде отдельной МС, включающей в себя от одного до четырех отдельных триггеров.
2.1. Асинхронный RS-триггер
Закон функционирования RS -триггера поясняется таблицей истинности (табл.2). S и R - информационные сигналы на входах триггера. Сокращения даны от слов S ( set - установка) и R(reset - сброс). Qn - выходной логический сигнал до поступления входных сигналов, Qn+1- то же после воздействия входных сигналов.
Таблица 2
Таблица истинности R-S триггера
S | R | Qn+1 |
0 | 0 | Qn |
0 | 1 | 0 |
1 | 0 | 1 |
1 | 1 | Неопределённость |
При подаче сигнала 1 на вход S(set - установка "включить") триггер переходит в состояние Qn+1 = 1. При поступлении 1 на вход R (reset - сброс, "отключить") устанавливается Qn+1 = 0. Следовательно, триггер является аналогом реле. Наряду с этим он служит элементом памяти, т.е. сохраняет информацию о последней из поступивших команд и при отсутствии новых команд на входах. При S=R=0 состояние триггера не меняется. Совпадение команд S = R= 1 ("включить" - "отключить") недопустимо. При таком сочетании входных сигналов состояние выхода неопределенно и это сочетание не используется.
На рис.6 приведено обозначение Р-триггера, а на рис.7 временные диаграммы, иллюстрирующие его работу. На рис.8 показана реализация RS -триггера на логических элементах И-НЕ. Особенностью триггера являются обратные связи, позволяющие учитывать предыдущее состояние.
RS -триггер может иметь инверсные входы и S. Такой триггер запускается переходом информационного сигнала от 1 к 0 (низкий активный уровень).
В ряде серий ЦИМС имеются готовые схемы RS триггеров.
2.2. Синхронный JК – триггер
В отличие от асинхронного триггера, который переключается мгновенно при изменении входного сигнала, синхронный триггер воспринимает информацию только при положительном (от 0 к 1) переходе импульсов на тактовом входе и переходит в новое устойчивое состояние в момент среза тактового импульса (триггер является двухступенчатым). Такая особенность позволяет синхронизировать во времени изменение состояния многих ячеек одного устройства тем самым исключая его непредусмотренные состояния. Назначение входов К и J аналогичны R и S (сброс и установка). Микросхема К155ТВ1 представляет собой синхронный JК-триггер с дополнительными асинхронными установочными инверсными входами R и S.
Таблица 3
Таблица истинности JК-триггера К155ТВ1
Режим работы | Вход | Выход | |||||
|
|
|
|
|
|
| |
Асинхронная установка | 0 | 1 | H | H | H | 1 | 0 |
Асинхронный сброс | 1 | 0 | H | H | H | 0 | 1 |
Неопределенность | 0 | 0 | H | H | H | 1 | 1 |
Переключение | 1 | 1 |
| 1 | 1 | n-1 | n-1 |
Загрузка 1 (установка) | 1 | 1 |
| 0 | 1 | 1 | 0 |
Загрузка 0 ( сброс) | 1 | 1 |
| 1 | 0 | 0 | 1 |
Хранение (нет изменений) | 1 | 1 |
| 0 | 0 | n-1 | n-1 |
В табл.3 Н - неопределенное (любое) состояние. Информацию можно загружать от входов J и К или задерживать ее только при = = 1. Если = =0 состояние и неопределенное. Из временной диаграммы рис.10 видно, что на интервале времени (отсутствие тактового импульса) информация по входам J и К не воспринимается и состояние триггера не меняется.
2.3. Счетный Т-триггер
Этот триггер получается из JК/триггера путем присоединения J и К входов к потенциалу, соответствующему логической 1 (можно оставить их "висящими в воздухе"). Таким образом остался только один тактовый вход - Т. В момент среза тактового импульса триггер переключается на противоположное состояние. Обозначение Т-триггера приведено на рис. II, а временная диаграмма на рис. 12. Из диаграммы видно, что частота повторения сигнала Q в 2 раза меньше, чем сигнала Т, т.е. Т-триггер делит частоту импульсов на 2. Т-триггер широко применяется в делителях частоты, счетчиках и др.
D-триггер
Д - триггер или триггер задержки (delay) передает на выход информацию, поступающую на вход при появлении тактового импульса, поэтому момент смены выходной информации несколько задерживается относительно момента смены входной информации. Логика работы Д-триггера определяется уравнением Qt+1=D. Д - триггер помимо тактового входа имеет только один вход Д=J= . Сигнал на входе Д запоминается в момент тактового импульса и хранится до следующего тактового импульса. Поэтому Д-триггер является элементом памяти, находит широкое применение в регистрах.
М икросхема К155ТМ2 содержит в корпусе два Д-триггера. Обозначение на. рис.1З, таблица истинности - табл.4, временная диаграмма - рис. 14.
Таблица 4
Таблица истинности Д-триггера К155ТМ2
Режим работы | Вход | Выход | ||||
|
| С | D |
|
| |
Асинхронная установка | 0 | 1 | H | H | 1 | 0 |
Асинхронный сброс | 1 | 0 | H | H | 0 | 1 |
Неопределенность | 0 | 0 | H | H | 1 | 1 |
Загрузка 1 (установка) | 1 | 1 |
| 1 | 1 | 0 |
Загрузка 0 (сброс) | 1 | 1 |
| 0 | 0 | 1 |
Входы и - асинхронные установочные с низким активным уровнем. Сбрасывают состояние триггера независимо от сигнала на тактовом входе. Если состояние = = 0, состояние Q и неопределенно. Информация на выход Q и при наличии входного Д и тактового С сигнала передается только при = =1. Сигнал Д передается на выходы Q и по фронту тактового импульса.
- Токи в полупроводниках. Дрейф и диффузия.
- Полупроводниковые диоды.
- Генератор гармонических колебаний на туннельном диоде.
- Принцип работы биполярного транзистора и соотношение для его токов.
- Основные соотношения токов в транзисторе.
- Основные параметры физической схемы замещения.
- Зависимость параметров и характеристик от температуры, частоты, и рабочей точки транзистора.
- Предельно допустимые параметры транзистора.
- Статистические вах n-канального полевого транзистора с управляющим p-n-переходом.
- Маркировка транзисторов.
- Тиристоры.
- Маркировка тиристоров.
- Усилители электрических сигналов.
- 5. Амплитудная характеристика усилителя.
- 6. Искажения сигналов в усилителях.
- Кпд усилителя.
- Классификация усилителей.
- Многокаскадные усилители.
- Режимы работы усилительного элемента.
- Усилительный каскад на бт.
- Усилители с обратной связью.
- Влияние отрицательной обратной связи на параметры и характеристики усилителя.
- Типы обратной связи.
- 2. Схема с оэ.
- Эмитерный повторитель.
- Усилитель с rc связью.
- Параметры усилителя в области средних частот.
- Частотная коррекция в области низких частот с использованием частотно-зависимого сопротивления коллекторной цепи.
- Коррекция в области высоких частот с использованием частотно-зависимых элементов в коллекторной цепи.
- Избирательные усилители.
- Избирательные усилители с частотно-зависимыми обратными связями (rc-избирательные усилители).
- Усилители мощности.
- Классификация усилителей мощности.
- Влияние выбора рт на кпд и кни.
- Безтрансформаторные усилители мощности.
- Усилители мощности с трансформаторной связью
- Усилители постоянного тока (упт).
- У пт с преобразованием входного сигнала.
- Структурная схема операционного усилителя.
- Анализ устройств, содержащих оу.
- Компараторы напряжений.
- Инвертирующий компаратор.
- Неинвертирующий компаратор с пос.
- Быстродействие компаратора с пос.
- Мультивибратор на оу.
- Источники питания.
- Структурная схема стабилизатора параллельного типа.
- Импульсы источника питания.
- Импульсные устройства.
- Мультивибратор
- Счетчики
- Регистр
- Дешифратор
- Аналогово-цифровые преобразователи.
- Ацп последовательного счёта.
- Ацп последовательного приближения.
- Ацп параллельного типа.
- Цифро-аналоговые преобразователи.