logo search
mat_mod

15. Модели нелинейных систем на фазовой плоскости. Анализ технических систем по фазовому портрету. Примеры построения фазовых портретов.

Совершенно так же, как и в линейной системе, процесс регулирования, описываемый уравнениями, содержащими нелинейности, может быть представлен на фазовой плоскости или в фазовом пространстве.

Рассмотрим и здесь в качестве основного примера случай, когда движения описываются двумя дифференциальными уравнениями первого порядка:

гдеf1(x1, х2) и f212) — заданные, в общем случае нелинейные функции указанных аргументов.

Дифференциальное уравнение фазовых траекторий получается, если вместо производных по времени ввести производнуюdx1/dx2.

Получаем:

К фазовой траектории может быть проведена только одна касательная, и, следовательно, фазовые траектории не пересекаются во всех тех точках фазовой плоскости, где не обращаются одновременно в нуль f11, x2) и f21, х2). Особые точки системы находятся из условия dx1/dx2 = 0/0, то есть определяются как общие корни двух уравнений:

В предыдущем случае при рассмотрении линейной системы было:

и уравнения имели только одно общее решение: х1 = х2 =0. В плоскости х1, х2 этм условия в случае линейной системы определяют две прямые линии, пересекающиеся в начале координат (рис.1, а). Если же функции f11, x2) и f21, х2) нелинейны, то кривые, соответствующие уравнениям, могут пересекаться и вне начала координат. Система имеет в этом случае, кроме ре­шения х1, =х2 = 0, и другие решения. В этом случае, кроме регулируемого режима, соответствующего началу координат, в системе возможны и иные положения равновесия (рис.1, б), и характер движения в системе зависит от величины отклонения от начала координат, вызванного возмущением.

Рис.1 Графики, соответствующие уравнениям для линейной (а) и нелинейной (б) систем

В рассматриваемом нелинейном случае особые точки могут быть лишь тех же типов, что и в линейной системе (фокусы, узлы и седла). Чтобы в нелинейном случае определить тип особой точки, надо составить соответствующее этой особой точке уравнение линейного приближения, разложив в окрестности этой точки в ряды правые части уравнений и сохранив затем в этих рядах только линейные члены. Эта операция эквивалентна «локальной» линеаризации системы вблизи особой точки.