43. Интерфейс и архитектура объекта в языке vhdl.
Полное VHDL-описание объекта состоит как минимум из двух отдельных описаний: описание интерфейса объекта и описание тела объекта (описание архитектуры).
Интерфейс описывается в объявлении объекта entity declaration и определяет входы и выходы объекта, его входные и выходные порты ports и параметры настройки generic. Параметры настройки отражают тот факт, что некоторые объекты могут иметь управляющие входы, с помощью которых может производиться настройка экземпляров объектов в частности, задаться временем задержки.
Например, у объекта Q1 три входных порта Х1, Х2, Х3 и два выхода У1, У2. Описаниеегоинтерфейсана VHDL имеетвид:
Entity Q1 is
Port (X1, X2, X3: in real; Y1, Y2: out real);
End Q1.
Порты объекта характеризуются направлением потока информации. Они могут быть:
входными (in)
выходными (out)
двунаправленными (inout)
двунаправленными буферными (buffer)
связными (linkage)
А также имеют тип, характеризующий значения поступающих на них сигналов:
целый (integer)
вещественный (real)
битовый (bit)
символьный (character)
Тело объекта специфицирует его структуру или поведение. Его описание по терминологии VHDL содержится в описании его архитектуры architecture.
VHDL позволяет отождествлять с одним и тем же интерфейсом несколько архитектур. Это связано с тем, что в процессе проектирования происходит проработка архитектуры объекта: переход от структурной схемы к электрической принципиальной, от поведенческого к структурному описанию.
Средства VHDL для отображения структур цифровых систем базируются на представлении о том, что описываемый объект entity представляет собой структуру из компонент component соединяемых друг с другом линиями связи. Каждая компонента, в свою очередь, является объектом и может состоять из компонент низшего уровня (иерархия объектов). Взаимодействуют объекты путем передачи сигналов signal по линиям связи. Линии связи подключаются к входным и выходным портам компонент. В VHDL сигналы отождествляются с линиями связи.
Описание структуры объекта строится как описание связей конкретных компонент, каждая из которых имеет имя, тип и карты портов. Карта портов port map определяет соответствие портов компонент поступающим на них сигналам, можно интерпретировать карту портов как разъем, на который приходят сигналы и в который вставляется объект-компонента.
Принятая в VHDL форма описания связей конкретных компонент имеет следующий вид:
Имя: тип связи (сигнал, порт).
Например, описание связей объекта Q1, представленного на рис. 3 выглядит следующим образом:
К1: SM port map (X1, X2, S);
K3: M port map (S, Y1);
K2: SM port map (S, X3, Y2);
Здесь К1, К2, К3- имена компонент; SM,M-типы компонент; Х1, Х2, Х3, S, Y1,Y2- имена сигналов, связанных с портами.
Полное VHDL описание архитектуры STRUCTURA объекта Q1 имеет вид:
Architecture STRUCTURA of Q1 is
Component SM port (A, B: in real; C: out real);
End component;
Component M port (E: in real; D: out real);
End component;
Signal S: real;
Begin
K1: SM port map (X1, X2, S);
K3: M port map (S, Y1);
K2: SM port map (S, X3, Y2);
End STRUCTURA;
Средства VHDL для отображения поведения описываемых архитектур строится на представлении их как совокупности параллельно взаимодействующих процессов. Понятие процесса process относится к базовым понятиям языка VHDL.
Архитектура включает в себя описание одного или нескольких параллельных процессов. Описание процесса состоит из последовательности операторов, отображающих действия по переработке информации. Все операторы внутри процесса выполняются последовательно. Процесс может находиться в одном из двух состояний - либо пассивном, когда процесс ожидает прихода сигналов запуска или наступления соответствующего момента времени, либо активном- когда процесс исполняется.
Процессы взаимодействуют путем обмена сигналами.
В общем случае в поведенческом описании состав процессов не обязательно соответствует составу компонент, как это имеет место в структурном описании.
Поведение VHDL-объектов воспроизводится на ЭВМ, и приходится учитывать особенности воспроизведения параллельных процессов на однопроцессорной ЭВМ. Особая роль в синхронизации процессов отводится механизму событийного воспроизведения модельного времени now.
Когда процесс вырабатывает новое значение сигнала перед его посылкой на линию связи, говорят, что он вырабатывает будущее сообщение transaction. С каждой линией связи (сигналом) может быть связано множество будущих сообщений. Множество сообщений для сигнала называется его драйвером driver.
VHDL реализует механизм воспроизведения модельного времени, состоящий из циклов. На первой стадии цикла вырабатываются новые значения сигналов. На второй стадии процессы реагируют на изменения сигналов и переходят в активную фазу. Эта стадия завершается, когда все процессы перейдут снова в состояние ожидания. После этого модельное время становится равным времени ближайшего запланированного события, и все повторяется.
Особый случай представляет ситуация, когда в процессах отсутствуют операторы задержки. Для этого в VHDL предусмотрен механизм так называемой дельта - задержки.
В случае дельта – задержек новый цикл моделирования не связан с увеличением модельного времени. В приведенном выше примере новое значение сигнала У1 вырабатывается через дельта- задержку после изменения сигнала S.
- 3. Режимы функционирования технических объектов.
- 4. Основные виды анализа технических систем (тс) при математическом
- 5. Классификация математических моделей.
- 6. Операторные модели систем (частотные, преобразование Лапласа, z-преобразование).
- 7. Свойства преобразования Лапласа.
- 9. Свойства пф. Классификация типовых пф.
- 10. Анализ систем в частотной области.
- 11. Анализ устойчивости тс: определения, критерии устойчивости, примеры анализа.
- 12. Качественный анализ технических систем. Необходимость выполнения качественного анализа технических систем, его цели.
- 13. Моделирование нелинейных систем: определение нелинейной системы, виды нелинейных характеристик элементов технических систем.
- 14. Особенности поведения и анализа нелинейных систем, методы решения систем нелинейных ду.
- 15. Модели нелинейных систем на фазовой плоскости. Анализ технических систем по фазовому портрету. Примеры построения фазовых портретов.
- 16. Факторные модели и модели регрессионного анализа. Примеры реализации.
- 17. Состав пакета OrCad. Порядок работы с пакетом OrCad.
- 18. Спектральный анализ в OrCad.
- 19. Частотный анализ в OrCad.
- 20. Статистический анализ в OrCad.
- 21. Язык моделирования pSpice. Основные семантические конструкции языка pSpice.
- 22. Язык моделирования pSpice. Описание топологии схемы.
- 23. Язык моделирования pSpice. Первые символы имён компонентов.
- 24. Язык моделирования pSpice. Классификация моделей компонентов. Имена типов моделей.
- 25. Математические операции в pSpice: классификация, порядок и примеры применения.
- Name — имя функции;
- 27. Язык pSpice. Анализ режима по постоянному току.
- 28. Язык pSpice. Частотный анализ.
- 29. Язык pSpice. Спектральный анализ.
- 30. Язык pSpice. Анализ шума.
- 31. Примеры описания директив на языке pSpice.
- 35. Реализация поведенческой модели в пакете OrCad. Применение элементов библиотеки abm.Slb.
- 36. Моделирование аналого-цифрового преобразователя (ацп) в пакете OrCad.
- 37. Моделирование цифро-аналогового преобразователя (цап) в пакете OrCad.
- 38. Основные блоки и конструкции языка vhdl.
- 39. Модели описания цифровой системы. Примеры.
- 40. Структура описания архитектурного тела vhdl. Примеры.
- 41. Структура описания интерфейса проекта на языке vhdl. Примеры.
- 42. Синтезируемое подмножество языка vhdl.
- 43. Интерфейс и архитектура объекта в языке vhdl.
- 44. Карта портов и карта настройки в языке vhdl.
- 45. Параллельный оператор generate в языке vhdl: назначение, общая формаописания, примеры применения.
- 46. Алфавит языка vhdl.
- 47. Скалярные типы в vhdl.
- 48. Регулярные типы в vhdl.
- 49. Физические типы в vhdl. Тип time.
- 50. Стандартные типы в vhdl.
- 51. Понятия сигнала и переменной в vhdl.
- 52. Атрибуты сигналов в языке vhdl.
- 53. Атрибуты скалярного типа в языке vhdl.
- 54. Атрибуты регулярного типа в языке vhdl.
- 55. Циклы в vhdl.
- 56. Оператор ветвления и селектор в vhdl.
- 57. Объявление компонента в vhdl. Включение компонента в схему.
- 58. Модели задержки в языке vhdl. Примеры применения.
- 59. Примеры описания регистровых схем на языке vhdl. Триггер d-типа
- Vhdl-файл имеет следующее описание:
- D-триггер с асинхронным сбросом
- 60. Основные операции в vhdl. Приоритеты операций.
- 61. Типы std_ulogic и std_logic.
- 62. Спецификация процедуры в vhdl.
- 63. Спецификация функции в vhdl.
- Объявление функции
- 64. Пакет std_logic_arith. Функции преобразования типов.