4.9 LABORATORY - NETWORKING
Purpose: To expose you to the architecture and components of a modern computer network.
Objectives: To be able to set up a switch and computers to communicate over an Intranet network.
Background:
Computers can be connected via a network. At a minimum this requires a network card in at least two computers and a connecting cable between them. These computers can then pass packets of information back and forth for basic communication. This type of connection is commonly used by people playing games such as Quake at home. A more mature network, like that found in a factory, must be more sophistocated.
The most fundamental concept in a network is the data packets and the protocol for exchanging them. The current Internet protocol is called IPV4 (this will be replaced by IPV6 in the near future). In this protocol each client on a network has a 4 byte (0-255) address, normally shown in the form ‘aaa.bbb.ccc.ddd’. In our case the university is a ‘class B’, so it owns all addresses that start with ‘148.61.ccc.ddd’. Most engineering students use a ‘class C’ network with the addresses ‘148.61.104.ddd’. In theory there are up to 256 clients on the engineering network. In practice some of these addresses are used for network housekeeping. For example the following addresses are used,
148.61.104.1 - this is the router/switch to other networks 148.61.104.254 - this is the gateway to other networks
If a network address is not used, it can be used by a normal network device, such as a computer or printer. There are two ways to assign these statically or dynamically. In a static connection the address can only be used by one machine. In a dynamic connection the addresses are assigned and release semi-randomly to network clients as the connect and disconnect from the network. Static IP addresses are primarily designed for computers that are always on, and are acting as servers on the network. Dynamic IP addresses are primarily used for computers that are only clients on the network. Some examples of static IP addresses on the network are:
148.61.104.215 - claymore.engineer.gvsu.edu 148.61.104.226 - excalibur.engineer.gvsu.edu 148.61.104.??? - falcon.engineer.gvsu.edu etc..
Most computers on the network are named, such as ‘gvsu.edu’. When a user enters this name into the computer, it must be converted to a network number. This is done by a ‘domain name server’ (DNS). There are two DNS servers at GVSU (148.61.1.10 and 148.61.1.15). These servers keep all of the names for computers at GVSU, and also provide links to computers at other sites so that their names and numbers can
- 1.3 PRACTICE PROBLEMS
- 2. AN INTRODUCTION TO LINUX/UNIX
- 2.1 OVERVIEW
- 2.1.1 What is it?
- 2.1.7 Distributions
- 2.1.8 Installing
- 2.2 USING LINUX
- 2.2.1 Some Terminology
- 2.2.4 Processes
- 2.3 NETWORKING
- 2.3.1 Security
- 2.4 INTERMEDIATE CONCEPTS
- 2.4.1 Shells
- 2.4.4 Desktop Tools
- 2.5 LABORATORY - A LINUX SERVER
- 2.8 REFERENCES
- 3.7 ARCHITECTURE OF ‘C’ PROGRAMS (TOP-DOWN)
- 3.9 CASE STUDY - THE BEAMCAD PROGRAM
- 3.9.1 Objectives:
- 3.9.2 Problem Definition:
- 3.9.3 User Interface:
- 3.9.3.1 - Screen Layout (also see figure):
- 3.9.7 Documentation
- 3.9.7.1 - Users Manual:
- 3.9.7.2 - Programmers Manual:
- 3.10 PRACTICE PROBLEMS
- 3.11 LABORATORY - C PROGRAMMING
- 4. NETWORK COMMUNICATION
- 4.1 INTRODUCTION
- 4.2 NETWORKS
- 4.2.1 Topology
- 4.2.3 Networking Hardware
- 4.2.6 SLIP and PPP
- 4.3 INTERNET
- 4.3.2 Computer Ports
- 4.3.3 Security
- 4.4 FORMATS
- 4.4.1 HTML
- 4.4.5 Java
- 4.4.6 Javascript
- 4.6 DESIGN CASES
- 4.9 LABORATORY - NETWORKING
- 5. DATABASES
- 5.2 DATABASE ISSUES
- 6. COMMUNICATIONS
- 6.1 SERIAL COMMUNICATIONS
- 6.2 SERIAL COMMUNICATIONS UNDER LINUX
- 6.3 PARALLEL COMMUNICATIONS
- 7. PROGRAMMABLE LOGIC CONTROLLERS (PLCs)
- 7.12.1 Data Files
- 7.12.1.4 - PLC Status Bits (for PLC-5s)
- 7.12.1.5 - User Function Memory
- 7.13 INSTRUCTION TYPES
- 7.13.1 Program Control Structures
- 7.13.2 Branching and Looping
- 7.13.3 Basic Data Handling
- 7.13.3.1 - Move Functions
- 7.15 LOGICAL FUNCTIONS
- 7.20 DESIGN TECHNIQUES
- 7.20.1 State Diagrams
- 7.23.1 SWITCHED INPUTS AND OUTPUTS
- 7.25 PRACTICE PROBLEMS
- 8.2 PROPRIETARY NETWORKS
- 8.2.0.1 - Data Highway
- 8.4 LABORATORY - DEVICENET
- 8.5 TUTORIAL - SOFTPLC AND DEVICENET
- 9. INDUSTRIAL ROBOTICS
- 9.1 INTRODUCTION
- 9.1.1 Basic Terms
- 9.2.2 Types of Robots
- 9.2.2.1 - Robotic Arms
- 9.3 MECHANISMS
- 9.5.2 Movemaster Programs
- 9.5.2.0.1 - Language Examples
- 9.5.3 Command Summary
- 9.6 PRACTICE PROBLEMS
- 9.7 LABORATORY - MITSUBISHI RV-M1 ROBOT
- 10. OTHER INDUSTRIAL ROBOTS
- 10.1 SEIKO RT 3000 MANIPULATOR
- 10.1.1.2 - Commands Summary
- 10.2 IBM 7535 MANIPULATOR
- 10.2.1 AML Programs
- 10.3 ASEA IRB-1000
- 10.6 LABORATORY - SEIKO RT-3000 ROBOT
- 11. ROBOT APPLICATIONS
- 11.0.1 Overview
- 11.1 END OF ARM TOOLING (EOAT)
- 11.1.1 EOAT Design
- 11.1.2 Gripper Mechanisms
- 11.1.3 Magnetic Grippers
- 11.1.3.1 - Adhesive Grippers
- 11.1.4 Expanding Grippers
- 11.3 INTERFACING
- 12. SPATIAL KINEMATICS
- 12.1 BASICS
- 12.2.1 Denavit-Hartenberg Transformation (D-H)
- 12.3 SPATIAL DYNAMICS
- 12.3.1 Moments of Inertia About Arbitrary Axes
- 12.4 DYNAMICS FOR KINEMATICS CHAINS
- 12.4.1 Euler-Lagrange
- 12.4.2 Newton-Euler
- 13.1.3 Modeling the Robot
- 13.2.2 Computer Control of Robot Paths (Incremental Interpolation)
- 13.4 LABORATORY - AXIS AND MOTION CONTROL
- 14. CNC MACHINES
- 14.1 MACHINE AXES
- 14.2 NUMERICAL CONTROL (NC)
- 14.3 EXAMPLES OF EQUIPMENT
- 14.3.1 EMCO PC Turn 50
- 14.4 PRACTICE PROBLEMS
- 14.5 TUTORIAL - EMCO MAIER PCTURN 50 LATHE (OLD)
- 14.6.1 LABORATORY - CNC MACHINING
- 15.3 PROPRIETARY NC CODES
- 16.5 DISCRETE IO
- 16.6 COUNTERS AND TIMERS
- 16.7 ACCESSING DAQ CARDS FROM LINUX
- 16.8 SUMMARY
- 16.9 PRACTICE PROBLEMS
- 17. VISIONS SYSTEMS
- 17.1 OVERVIEW
- 17.11 PRACTICE PROBLEMS
- 18. INTEGRATION ISSUES
- 18.1 CORPORATE STRUCTURES
- 18.2 CORPORATE COMMUNICATIONS
- 19. MATERIAL HANDLING
- 19.1 INTRODUCTION
- 19.3 PRACTICE QUESTIONS
- 19.4 LABORATORY - MATERIAL HANDLING SYSTEM
- 19.4.1 System Assembly and Simple Controls
- 19.5 AN EXAMPLE OF AN FMS CELL
- 19.5.1 Overview
- 19.6 THE NEED FOR CONCURRENT PROCESSING
- 20. PETRI NETS
- 20.1 INTRODUCTION
- 20.2 A BRIEF OUTLINE OF PETRI NET THEORY
- 20.4.3 An Exclusive OR Transition:
- 20.4.5 RELATIONAL NETS
- 20.7 PRACTICE PROBLEMS
- 21. PRODUCTION PLANNING AND CONTROL
- 21.1 OVERVIEW
- 21.2 SCHEDULING
- 21.3 SHOP FLOOR CONTROL
- 21.3.1 Shop Floor Scheduling - Priority Scheduling
- 22. SIMULATION
- 22.3 DESIGN OF EXPERIMENTS
- 23. PLANNING AND ANALYSIS
- 23.1 FACTORS TO CONSIDER
- 24. REFERENCES
- 25. APPENDIX A - PROJECTS
- 25.1 TOPIC SELECTION
- 25.1.1 Previous Project Topics
- 25.2 CURRENT PROJECT DESCRIPTIONS