Классификация погрешностей
Процедура измерения состоит из следующих этапов: принятие модели объекта измерения, выбор метода измерения, выбор СИ, проведение эксперимента для получения результата. Это приво- дит ктому, что результат измерения отличается от истинного значения измеряемой величины на некоторую величину, называ- емую погрешностью измерения. Измерение можно считать за- конченным, если определена измеряемая величина и указана воз- можная степень ее отклонения от истинного значения.
Причины возникновения погрешностей чрезвычайно много- численны, поэтому классификация погрешностей, как и всякая другая классификация, носит достаточно условныйхарактер.
Следует различать погрешность СИ и погрешность результата измерения этим же СИ. Погрешности измерений зависят от мет- рологических характеристик используемых СИ, совершенства выбранного метода измерений, внешних условий, а также от свойств объекта измерения и измеряемой величины. Погрешно- сти измерений обычно превышают погрешности используемых СИ, однако, используя специальные методы устранения ряда по- грешностей и статистическую обработку данных многократных наблюдений, можно в некоторых случаях получить погрешность измерения меньше погрешности используемых СИ.
По способу выражения погрешности средств измерений де- лятся на абсолютные, относительные и приведенные.
Абсолютная погрешность – погрешность СИ, выраженная в единицах измеряемой физической величины:
Xизм. Хд.
(1.3)
Относительная погрешность – погрешность СИ, выражен- ная отношением абсолютной погрешности средства измерений к результату измерений или к действительному значению измерен- ной физической величины:
отн 100 .
(1.4)
Х
д
Для измерительного прибора γотн характеризует погрешность в данной точке шкалы, зависит от значения измеряемой величины и имеет наименьшее значение в концешкалы прибора.
Для характеристики точности многих средств измерений при- меняется приведенная погрешность.
Приведенная погрешность – относительная погрешность, выраженная отношением абсолютной погрешности СИ к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона:
прив 100 , (1.5)
Х норм
где Хнорм – нормирующее значение, т.е. некоторое установленное значение, по отношению к которому рассчитывается погреш- ность.
Выбор нормирующего значения производится в соответствии с ГОСТ 8.009 – 84. Это может быть верхний предел измерений СИ, диапазон измерений, длина шкалы и т.д. Для многих средств
измерений по приведенной погрешности устанавливают класс точности прибора.
По причине и условиям возникновения погрешности средств измерений подразделяются на основную и дополнительную.
Основная погрешность – это погрешность СИ, находящихся в нормальных условиях эксплуатации. Она возникает из-за не- идеальности собственных свойств СИ и показывает отличие дей- ствительной функции преобразования СИ в нормальных услови- ях от номинальной.
Нормативными документами на СИ конкретного типа (стан- дартами, техническими условиями, калибровкой и др.) оговари- ваются нормальные условия измерений – это условия измерения, характеризуемые совокупностью значений илиобластей значе- ний влияющих величин, при которых изменением результата из- мерений пренебрегают вследствие малости. Среди таких влияю- щих величин наиболее общими являются температура и влаж- ность окружающей среды, напряжение, частота и форма кривой питающего напряжения, наличие внешних электрических и маг- нитных полей и др. Для нормальных условий применения СИ нормативными документами предусматриваются:
нормальная область значений влияющей величины (диапа- зон значений): температура окружающей среды – (20 ± 5)°С; по- ложение прибора – горизонтальное с отклонением от горизон- тального ±2°; относительная влажность – (65 ± 15)%; практиче- ское отсутствие электрических и магнитных полей, напряжение питающей сети – (220±4,4) В, частота питающей сети– (50± 1) Гц и т.д.;
рабочая область значений влияющей величины – область значений влияющей величины, в пределах которой нормируют дополнительную погрешность или изменение показаний средства измерений;
рабочие условия измерений – это условия измерений, при которых значения влияющих величин находятся в пределах рабо- чих областей. Например, для измерительного конденсатора нор- мируют дополнительную погрешность на отклонение температу- ры окружающего воздуха от нормальной; для амперметра — из- менение показаний, вызванное отклонением частоты переменно- го тока от 50 Гц (значение частоты 50 Гц в данном случае прини- мают за нормальноезначение частоты).
Дополнительная погрешность – составляющая погрешности СИ, возникающая дополнительно к основной погрешности вслед- ствие отклонения какой-либо из влияющих величин от нормаль- ного ее значения или вследствие ее выхода за пределы нормаль- ной области значений. Нормируются, как правило, значения ос- новной и дополнительной погрешностей, рассматриваемыекак наибольшие для данного средства измерений.
Предел допускаемой основной погрешности – наибольшая основная погрешность, при которой СИ может быть признано годным и допущено к применению по техническим условиям.
Предел допускаемой дополнительной погрешности – это та наибольшая дополнительная погрешность, при которой средство измерения может быть допущено к применению. Например, для прибора класса точности 1,0 приведенная дополнительная по- грешность при изменении температуры на 10°С не должна превы- шать ±1 %. Это означает, что при изменении температуры среды на каждые 10°С добавляется дополнительная погрешность 1 %.
Пределы допускаемых основной и дополнительной погрешно- стей выражают в форме абсолютных, относительных и приведен- ных погрешностей.
Обобщенная характеристика данного типа средств измерений, как правило, отражающая уровень их точности, определяемая пределами допускаемых основной и дополнительных погрешно-
стей, а также другими характеристиками, влияющими на точ- ность, называется классом точности СИ. Класс точности дает возможность судить о том, в каких пределах находится погреш- ность СИ одного типа, но не является непосредственным показа- телем точности измерений, выполняемых с помощью каждого из этих средств, так как погрешность зависит также от метода изме- рений, условий измерений и т.д. Это важно учитывать при выбо- ре СИ в зависимости от заданной точности измерений. Класс точности СИ конкретного типа устанавливают в стандартах тех- нических требований (условий) или в других нормативных доку- ментах. Например, прибор класса 0,5 может иметь основную приведенную погрешность, не превышающую 0,5 %. Вместе с тем прибор должен удовлетворять соответствующим требовани- ям и в отношении допускаемых дополнительных погрешностей. Например, ГОСТ 8.401–80 устанавливает девять классов точно- сти для аналоговых электромеханических приборов: 0,05; 0,1; 0,2;
0,5; 1,0; 1,5; 2,5; 4,0; 6,0.
Зная класс точности СИ, из (1.5) можно найти максимально допустимое значение абсолютной погрешностидля всех точек диапазона:
макс.доп γприв Х норм /100
(1.6)
По характеру изменения погрешности средств измерений под- разделяются на систематические,случайные и промахи.
Систематическая погрешность – составляющая погрешно- сти средства измерений, принимаемая за постоянную или зако- номерную изменяющуюся. Систематическая погрешность данно- го СИ, какправило,будет отличаться отсистематической по- грешности другого СИ этого же типа, вследствие чего для группы однотипных СИ систематическая погрешность может иногда рас- сматриваться как случайная погрешность.
К систематическим погрешностям СИ относят методические, инструментальные, субъективные и другие погрешности, кото- рые при проведении измерений необходимо учитывать и по воз- можности устранять.
Случайная погрешность – составляющая погрешности СИ, изменяющаяся случайным образом. Она приводит к неоднознач- ности показаний и обусловлена причинами, которые нельзя точно предсказать и учесть. Однако при проведении некоторого числа повторных опытов теория вероятности и математическая стати- стика позволяют уточнить результат измерения, т.е. найти значе- ние измеряемой величины, более близкое к действительному зна- чению, чем результат одного измерения.
Промахи – грубые погрешности, связанные с ошибками опе- ратора или неучтенными внешними воздействиями. Их обычно исключают из результатов измерений.
В зависимости от значения измеряемой величины погрешности СИ подразделяются на аддитивные, не зависящие от значения вход- ной величины X, и мультипликативные – пропорциональные X.
Аддитивная погрешность Δадд не зависит от чувствительно- сти прибора и является постоянной по величине для всех значе- ний входной величины Х в пределах диапазона измерений (рис. 1.1, а). Источники данной погрешности: трение в опорах, шумы, наводки, вибрации. Примерами аддитивной погрешности приборов являются погрешности нуля, погрешность дискретно- сти (квантования) в цифровых приборах. От значения этой по- грешности зависит наименьшее значение входной величины. Ес- ли прибору присуща только аддитивная погрешность или она существенно превышает другие составляющие, то предел допу- стимой основной погрешности нормируют в виде приведенной погрешности (1.5).
Мультипликативная погрешность зависит от чувствитель- ности прибора и изменяется пропорционально текущему значе- нию входной величины (рис. 1.1, б). Источником этой погрешно- сти являются: погрешности регулировки отдельных элементов СИ (например, шунта и добавочного резистора), старение эле- ментов, изменение их характеристик, влияние внешних факторов.
Δадд Δм Δ
0 Хнорм Х 0
Хнорм Х 0
Хнорм Х
Рис. 1.1. Графики погрешностей измерительных приборов и преобразователей: а – аддитивной; б – мультипликативной;
в – суммарной
Если прибору присуща только мультипликативная погрешность или она существенна, то предел допускаемой относительной по- грешности выражают в виде относительной погрешности (1.4). Класс точности таких СИ обозначают одним числом, помещенным в кружок и равным пределу допускаемой относительной погреш- ности, например счетчик электрической энергии класса .
Суммарная абсолютная погрешность (рис. 1.1, в) определяется по формуле
адд м адд X норм м X , (1.7)
где
γадд Δадд / X норм
приведенное значение аддитивной по-
грешности;
γм Δм / X
относительное значение мультиплика-
тивной погрешности.
Тогда относительная суммарная погрешность определяется по формуле
Δ
отн X
адд
X норм X
м м адд адд
X норм X
адд
1,
(1.8)
X
где d адд;
c м адд .
Для средств измерений, у которых аддитивная и мультиплика- тивная составляющие соизмеримы, предел относительной допус- каемой основной погрешности выражается двухчленной форму- лой (1.8). Обозначение класса точности для них состоит из двух чисел, выражающих с и d в процентах и разделенных косой чер- той (c/d), например класс 0,02/0,01. Такое обозначение удобно, так как первый его член с равен относительной погрешности СИ в наиболее благоприятных условиях, когда X≈Xнорм. Второй член формулы (1.8) характеризует увеличение относительной погреш- ности измерения при уменьшении X, т.е. аддитивной составляю- щей погрешности. К этой группе СИ относятся цифровые мосты, компенсаторы с ручным и автоматическим уравновешиванием.
Аддитивная и мультипликативная погрешности имеют систе- матические и случайные составляющие.
Погрешность СИ также может быть нормирована к длине шкалы. В этом случае класс точности (1.5) обозначается одним числом в процентах, помещенным между двумя линиями, распо- ложенными под углом, например: . К ним относятся показы- вающие приборы с резко неравномерной шкалой (например, ги- перболической или логарифмической). Конкретные ряды классов точности устанавливаются в стандартах на отдельные виды СИ.
В зависимости от влияния характера изменения измеряемой величины погрешности СИ подразделяются на статические и ди- намические.
Статическая погрешность – погрешность СИ, применяемо- го при измерении физической величины, принимаемой за неиз- менную.
Динамическая погрешность – погрешность СИ, возникающая при измерении изменяющейся (в процессе измерений) физической величины, являющаяся следствием инерционных свойств СИ.
- Рецензенты:
- Оглавление
- Предисловие
- Введение
- Глава 1. Основныепонятияи определения измерительной техники
- Основные понятия и определения метрологии
- Единицы физических величин
- Классификация и методы измерений
- Классификация средств измерений
- Метрологические характеристики средств измерений
- Классификация погрешностей
- Модели измерительного процесса
- Систематические погрешности
- Случайные погрешности
- Обработка результатов измерений
- Суммирование погрешностей
- Формы записи результатов измерений
- Глава 2. Технические средства измерений электрических величин
- Электромеханические измерительные приборы
- Электромагнитные измерительные приборы
- Электродинамические измерительные приборы
- Ферродинамические измерительные приборы
- Электростатические измерительные приборы
- Индукционные измерительные приборы
- Электромеханические приборы с преобразователями
- Измерительные трансформаторы тока и напряжения
- Измерительные трансформаторы переменного тока
- Измерительные трансформаторы напряжения
- Основными параметрами трансформатора напряжения
- Электронные измерительные приборы
- Электронные вольтметры постоянного тока
- Электронные вольтметры переменного тока
- Электронный вольтметр среднего значения
- Амплитудный электронный вольтметр (диодно- конденсаторный)
- Электронный вольтметр действующего значения.
- Электронный омметр
- Цифровые измерительные приборы
- Измерительные мосты и компенсаторы
- Компенсаторы постоянного тока
- Компенсаторы переменного тока
- Автоматические компенсаторы постоянного тока
- Мосты переменного тока
- Глава 3. Общие сведения об измерении неэлектрических величин
- Схемы включения преобразователей в мостовые схемы
- Динамические свойства преобразователей
- Классификация измерительных преобразователей
- Глава 4. Параметрические преобразователи
- Фотоэлектрические преобразователи
- Емкостные преобразователи
- Тепловые преобразователи
- Погрешности термоанемометра
- Погрешности газоанализатора.
- Ионизационные преобразователи
- Реостатные преобразователи
- Тензорезистивные преобразователи
- Индуктивные преобразователи
- Магнитоупругие преобразователи
- Погрешности магнитоупругих преобразователей
- Применение магнитоупругих преобразователей
- Генераторные преобразователи
- Гальванические преобразователи
- Глава 5. Классификация ацп, методыпреобразования и построения ацп
- Аналого-цифровое преобразование сигналов
- Классификация ацп
- Классификация ацп по методам преобразования
- Метод последовательного счета
- Метод поразрядного уравновешивания
- Метод одновременного считывания
- Построение ацп
- Сравнительные характеристики ацп различной архитек- туры
- Параметры ацп и режимы их работы
- Максимальная потребляемая или рассеиваемая мощность
- Глава 6. Измерительные информационные системы
- Стадии проектирования иис:
- Роль информационных процессов
- Виды и структуры измерительных информационных систем
- Основные компоненты измерительных информационных систем
- Математические модели и алгоритмы измерений для измерительных информационных систем
- Нет Корректировка алгоритма измерения Измерение
- Разновидности измерительных информационных систем
- Многоточечные (последовательно-параллельного дей- ствия) ис
- Аппроксимирующие измерительные системы (аис).
- Телеизмерительные системы
- Системы автоматического контроля
- Системы технической диагностики
- Системы распознавания образов
- Особенности проектирования измерительных информационных систем
- Интерфейсы информационно-измерительных систем
- Заключение
- Список литературы
- Основные и производные единицы Основные единицы измерения
- Приборы для измерения электрической мощности и количества электричества
- Приборы для измерения электрического сопротивления, емкости, индуктивности и взаимной индуктивности
- И угла сдвига фаз
- Прочие электроизмерительные приборы
- Электронные измерительные приборы и устройства
- Средства измерений и автоматизации
- ГосТы, осТы и нормативные документы иис