Способы перемещения роботов. Колёсные и гусеничные роботы.
Наиболее распространёнными являются четырёхколёсные и гусеничные роботы. Также создаются роботы, имеющие другое число колёс — два или одно. Такого рода решения позволяют упростить конструкцию робота, а также придать роботу возможность работать в пространствах, где четырёхколёсная конструкция оказывается неработоспособна.
Двухколёсные роботы, как правило, используют гироскоп, для определения угла наклона корпуса робота и выработки управляющего напряжения для приводов робота с целью удержать равновесие и совершать необходимые перемещения. Задача удержания равновесия двухколёсного робота связана с динамикой обратного маятника. На данный момент, разработано множество подобных «балансирующих» устройств. К таким устройствам можно отнести Сегвей, который может быть использован, как компонент робота; так например сегвей использован как транспортная платформа в разработанном НАСА роботе Робонавт.
Одноколёсные роботы во многом представляют собой развитие идей, связанных с двухколёсными роботами. Для перемещения в 2D пространстве в качестве единственного колеса может использоваться шар, приводимый во вращение несколькими приводами. Несколько разработок подобных роботов уже существуют. Примерами могут служить шаробот разработанный в университете Карнеги — Меллона, шаробот «BallIP», разработанный в университете Тохоку Гакуин (англ. Tohoku Gakuin University), или шаробот Rezero, разработанный в Швейцарской высшей технической школе. Роботы такого типа имеют некоторые преимущества, связанные с их вытянутой формой, которые могут позволить им лучше интегрироваться в человеческое окружение, чем это возможно для роботов некоторых других типов.
Существует некоторое количество прототипов сферических роботов. Некоторые из них для организации перемещения используют вращение внутренней массы.Роботов подобного типа называют англ. spherical orb robots, англ. orb bot и англ. ball bot.
Для перемещения по неровным поверхностям, траве и каменистой местности разрабатываются шестиколёсные роботы, которые имеют большее сцепление, по сравнению с четырёхколёсными. Ещё большее сцепление обеспечивают гусеницы. Многие современные боевые роботы, а также роботы, предназначенные для перемещения по грубым поверхностям разрабатываются как гусеничные. Вместе с тем, затруднено использование подобных роботов в помещениях, на гладких покрытиях и коврах. Примерами подобных роботов могут служить разработанный НАСА робот англ. Urban Robot («Urbie»), разработанные компанией iRobot роботы Warrior и PackBot.
-
Содержание
- Робототехника - определение. Мехатроника - определение, общие понятия.
- Краткая история развития робототехники.
- Робот - определение.
- Состав и структура робота.
- Приводы в робототехнике.
- Системы управления в робототехнике.
- Способы перемещения роботов. Колёсные и гусеничные роботы.
- Способы перемещения роботов. Шагающие роботы.
- Промышленные роботы - определение, общие понятия.
- Общие принципы технической политики при роботизации промышленного производства.
- Общее устройство и составные части промышленных роботов.
- Захватные устройства. Назначение. Виды захватных устройств.
- Принципы мехатронного подхода к проектированию.
- Чувствительные устройства внешней информации.
- Системы технического зрения.
- Локационные сенсорные устройства.