Физические малосигнальные модели биполярных транзисторов
Для анализа работы транзистора в усилительных устройствах в активном режиме часто используют физические и формализованные модели транзистора при заданных значениях постоянных напряжений и токов, совокупность которых определяет режим работы транзистора по постоянному току (или так называемую «рабочую точку»), для небольших (малых) изменений переменных токов и напряжений в окрестности этой рабочей точки. Именно для этих малых изменений переменных и строятся малосигнальные модели транзистора. Одной из физических малосигнальных моделей является модель, основой которой является модель Эберса-Молла с двумя источниками тока. На рис. 3.13 показана такая модель, включающая в себя объемные сопротивления полупроводников в областях эмиттера, базы, коллектора rЭ1 , rБ1 , rК1 , а также дифференциальные сопротивления и емкости переходов rЭ , rК , СЭ , СК .
Рис. 3.13
Поскольку наибольшее объемное сопротивление полупроводника имеет база, и эмиттерный переход открыт, то можно использовать более простую Т-образную физическую модель транзистора с ОБ (рис.3.14,а). Для транзистора с ОЭ аналогичная модель представлена на рис. 3.14,б.
Рис. 3.14
Дифференциальное сопротивление эмиттера составляет единицы – десятки Ом, сопротивление объема базы – сотни Ом, сопротивление коллектора в схеме с ОБ – Мегомы. Емкость коллекторного перехода составляет единицы – десятки пикофарад. В схеме с ОЭ в выходной цепи дифференциальное сопротивление и емкость пересчитываются по формулам:
Емкости Ск и СК* влияют на работу транзистора в области высоких частот. Строгая теория дает довольно сложную картину зависимости параметров модели от частоты. На практике используют упрощенные модели, сводящие сложную зависимость лишь к изменению коэффициента передачи тока эмиттера (ОБ) или базы (ОЭ) от частоты:
где - коэффициенты передачи тока на низких частотах, - частоты на которых коэффициент передачи падает в раз. Эти же частоты , выраженные в герцах, называются предельными частотами коэффициентов передачи тока в схемах ОБ и ОЭ соответственно. Частоты связаны зависимостью , т.е. предельная частота транзистора, включенного по схеме с общим эмиттером меньше предельной частоты транзистора, включенного по схеме с общей базой. В зависимости от значения предельной частоты различают транзисторы низкочастотные ( ), среднечастотные ( ), высокочастотные ( ) сверхвысокочастотные .
В справочниках для транзистора, включенного по схеме ОЭ, дается частота fгр (или fт), на которой коэффициент передачи базового тока становится равным 1. Кроме того, иногда приводится так называемая максимальная частота fmax – наибольшая частота, при которой транзистор способен работать в схеме автогенератора при оптимальной обратной связи. Приближенно , где - постоянная времени цепи обратной связи. Максимальная частота определяет устойчивость усилителя на данном транзисторе к самовозбуждению на частотах f < fmax .
- Ответы к билетам по апмт Билет №1
- 1. Проектные процедуры и операции в сапр.
- 2. Получение частотных характеристик в pSpice.
- 3. Упаковка компонентов в корпуса OrCad.
- Билет №2
- 1. Пакет OrCad 9.2. Назначение и возможности.
- 2. Реализация метода Монте-Карло в pSpice.
- 3. Импорт проекта из pSpice в OrCad.
- 2. Анализ цепи по постоянному току в pSpice.
- 3. Процедура установки формата проектируемой печатной платы.
- Билет №4
- 2. Анализ цепи постоянного тока в dc Sweep.
- II. Температура компонентов в качестве изменяемой переменой.
- 3. Процедуры установки корпусов на печатной плате.
- Билет №5
- 1. Методы проектирования медицинской аппаратуры.
- 2. Математическое описание модели диода. Идеальный математический диод (d-элемент)
- 3. Сдвоенный анализ dc Sweep.
- Билет №6
- 1. Типы объектов проектирования в сапр.
- 2. Математическое описание пассивных компонентов.
- 3. Параметрический анализ dc Sweep.
- Билет №7
- 2. Специальные виды анализа в pSpice.
- 3. Задачи конструирования печатных плат.
- Билет №8
- 1. Основные термины и определения в автоматического проектирования.
- 2. Анализ переходных процессов в pSpice.
- 3. Математическая модель биполярного транзистора. Модель Эберса - Молла
- Физические малосигнальные модели биполярных транзисторов
- Билет №9
- 2. Работа с программой probe.
- 3. Моделирование аналоговых и цифровых устройств в pSpice.
- 1.1 Создание проекта
- 1.2.1. Размещение компонентов
- 1.2.2. Размещение земли
- 1.2.4. Соединение элементов
- 1.2.5. Простановка позиционных обозначений компонентов
- 1.2.6. Простановка имен цепей
- 1.2.7. Выявление ошибок в схеме
- 1.3. Создание иерархических блоков
- 1.5. Моделирование
- Билет №10
- 1. Общие сведения об объектах и задачах автоматического проектирования.
- 2. Анализ частотных характеристик.
- 3. Расчет электрических параметров печатных плат.