Дискретный канал связи с помехами
Для описания сообщений используются математические модели в виде дискретных и непрерывных случайных процессов. Для построения модели необходимо знать объем первичного алфавита знаков, из которых источником формируются сообщения, и вероятности создания им отдельных знаков с учетом возможной взаимосвязи между ними.
При доказательстве основных положений теории информации Шенноном использовалась модель, называемая эргодическим источником сообщений.
Последовательность знаков данного источника удовлетворяет условиям эргодичности (1) и стационарности (2). Первое означает, что статистические закономерности, полученные при исследовании одного достаточно длинного сообщения с вероятностью, близкой к 1, справедливы для всех сообщений, создаваемых источником. Второе означает, что вероятности отдельных знаков и их сочетаний не зависят от расположения последних по длине сообщения. Из статических характеристик нас интересует средняя неопределенность на один знак последовательности.
Стационарный источник сообщений, выбирающий каждый знак формируемой последовательности независимо от других знаков, всегда является эргодическим (источник без памяти). Мы будем рассматривать дискретные каналы связи без памяти.
Каналом без памяти называется канал, в котором на каждый передаваемый символ сигнала, помехи воздействуют, не зависимо от того, какие сигналы передавались ранее. То есть помехи не создают дополнительные коррелятивные связи между символами. Название «без памяти» означает, что при очередной передаче канал как бы не помнит результатов предыдущих передач.
При наличии помехи среднее количество информации в принятом символе сообщении –Y , относительно переданного – X равно:
.
Для символа сообщения XT длительности T, состоящего из n элементарных символов среднее количество информации в принятом символе сообщении –YT относительно переданного – XT равно:
I(YT, XT) = H(XT)-H(XT/YT) = H(YT)-H(YT/XT) = n[H(Y)- H(Y/X].
Для определения потерь в дискретном канале связи используется канальная матрица (матрица переходных вероятностей), позволяющая определить условную энтропию характеризующую потерю информации на символ сообщения.
Скорость передачи информации по дискретному каналу с помехами
равна:
Пропускная способность дискретного канала при наличии помех равна максимально допустимой скорости передачи информации, причем максимум разыскивается по всем распределениям вероятностей p(x) на X и, поскольку, энтропия максимальна для равномерного распределения (для равновероятных символов сообщения), то выражение для пропускной способности имеет вид:
.
Как видно из формулы, наличие помех уменьшает пропускную способность канала связи.
- Тема 1. Предмет и методы теории информации и кодирования
- 1.1. Введение
- 1.2. Основные понятия и определения
- 1.3. Системы передачи информации
- Тема 2. Математическая теория информации
- 2.1. Количество информации, и ее мера
- 2.2. Свойства количества информации
- 2.3. Энтропия информации
- 5.2. График энтропии для двух альтернативных событий
- 2.4. Свойства энтропии сообщений
- 2.5. Безусловная энтропия и ее свойства
- 2.6. Условная энтропия.
- 2.5. Энтропия объединения
- Энтропия объединения (совместная энтропия) находится при помощи матрицы ( табл.3) путем суммирования по строкам или столбцам всех вероятностей вида
- Уяснению взаимосвязи между рассмотренными видами энтропий дискретных систем способствует их графическое изображение.
- Тема 3. Основы теории кодирования
- 3.1.Основные понятия и определения
- 3.2. Классификация кодов
- 3.3. Способы представления кодов
- Тема 4. Каналы связи
- 4.1. Каналы связи, их классификация и характеристики
- Пропускная способность дискретного канала связи
- Дискретный канал связи без помех
- Дискретный канал связи с помехами
- Пример. По каналу связи передаются сообщения, вероятности которых соответственно равны:
- Пропускная способность бинарного, симметричного канала
- Избыточность сообщений
- Тема 5. Оптимальное кодирование
- 5.1. Основные понятия и определения
- 5.2. Код Шеннона-Фано
- 5.3. Код Хаффмена
- Тема 6. Помехоустойчивое кодирование
- 6.1. Общие положения
- 6.2. Обнаруживающие коды
- Тема 7. Корректирующие коды
- 7.1. Основные понятия
- 7.2 Линейные групповые коды
- 7.3. Код хэмминга
- Тема 8. Циклические коды
- 8.1. Операции над циклическими кодами
- 8.2. Циклические коды, исправляющие одиночную ошибку
- Если задана длина кодовой комбинации, то число контрольных разрядов определяем по формуле
- Так как частное q(X) имеет такую же степень, как и кодовая комбинация g(X) , то q(X) является кодовой комбинацией того же k - значного кода.
- 8.3. Матричная запись циклического кода
- 8.4. Циклические коды, обнаруживающие трехкратные ошибки
- Тема 9. Коды боуза-чоудхури- хоквингема
- Сигнальные символы это вспомогательные данные, облегчающие декодирование: служебные сигналы, сигналы синхронизации и т. Д.
- Тема 10. Введение в криптологию
- 0 1 2 3 4 5 6 7 8 9 25 Ключ
- 4 7 9 2 3 5 1 6 8 Ключ
- Функция дискретного логарифма обратная