8.2. Циклические коды, исправляющие одиночную ошибку
Идея построения циклических кодов основана на использовании неприводимых полиномов. Неприводимыми полиномами называются полиномы, которые могут быть представлены в виде произведения с коэффициентами того же поля (двоичного). Неприводимые полиномы, как и простые числа, делятся только на себя или на 1.
Идея коррекции ошибок базируется на том, что кодовые комбинации делятся без остатка на некоторый образующий полином, который выбирается из числа неприводимых. Неприводимые полиномы являются образующими (порождающими) полиномами, т.к., если заданные кодовые комбинации умножить на выбранный неприводимый полином, то получится циклический код, корректирующие способности которого определяются неприводимым полиномом.
Процедура кодирования, декодирования, обнаружения и исправления ошибок зависит от количества ошибок. Рассмотрим процедуру кодирования для кодов, исправляющих одиночную ошибку (d0 = 3).
1. Для заданного k и S определяется число контрольных разрядов m и длину кодовой комбинации n по формулам:
m = [log2 {(k+1)+ [log2(k+1)]}];
n=m+k.
- Тема 1. Предмет и методы теории информации и кодирования
- 1.1. Введение
- 1.2. Основные понятия и определения
- 1.3. Системы передачи информации
- Тема 2. Математическая теория информации
- 2.1. Количество информации, и ее мера
- 2.2. Свойства количества информации
- 2.3. Энтропия информации
- 5.2. График энтропии для двух альтернативных событий
- 2.4. Свойства энтропии сообщений
- 2.5. Безусловная энтропия и ее свойства
- 2.6. Условная энтропия.
- 2.5. Энтропия объединения
- Энтропия объединения (совместная энтропия) находится при помощи матрицы ( табл.3) путем суммирования по строкам или столбцам всех вероятностей вида
- Уяснению взаимосвязи между рассмотренными видами энтропий дискретных систем способствует их графическое изображение.
- Тема 3. Основы теории кодирования
- 3.1.Основные понятия и определения
- 3.2. Классификация кодов
- 3.3. Способы представления кодов
- Тема 4. Каналы связи
- 4.1. Каналы связи, их классификация и характеристики
- Пропускная способность дискретного канала связи
- Дискретный канал связи без помех
- Дискретный канал связи с помехами
- Пример. По каналу связи передаются сообщения, вероятности которых соответственно равны:
- Пропускная способность бинарного, симметричного канала
- Избыточность сообщений
- Тема 5. Оптимальное кодирование
- 5.1. Основные понятия и определения
- 5.2. Код Шеннона-Фано
- 5.3. Код Хаффмена
- Тема 6. Помехоустойчивое кодирование
- 6.1. Общие положения
- 6.2. Обнаруживающие коды
- Тема 7. Корректирующие коды
- 7.1. Основные понятия
- 7.2 Линейные групповые коды
- 7.3. Код хэмминга
- Тема 8. Циклические коды
- 8.1. Операции над циклическими кодами
- 8.2. Циклические коды, исправляющие одиночную ошибку
- Если задана длина кодовой комбинации, то число контрольных разрядов определяем по формуле
- Так как частное q(X) имеет такую же степень, как и кодовая комбинация g(X) , то q(X) является кодовой комбинацией того же k - значного кода.
- 8.3. Матричная запись циклического кода
- 8.4. Циклические коды, обнаруживающие трехкратные ошибки
- Тема 9. Коды боуза-чоудхури- хоквингема
- Сигнальные символы это вспомогательные данные, облегчающие декодирование: служебные сигналы, сигналы синхронизации и т. Д.
- Тема 10. Введение в криптологию
- 0 1 2 3 4 5 6 7 8 9 25 Ключ
- 4 7 9 2 3 5 1 6 8 Ключ
- Функция дискретного логарифма обратная