§12.2. Начальная загрузка через хост – машину с использованием процедур запроса и предоставления шины
Все процессоры семейства ADSP-2100, в которых имеется внутреннее ОЗУ программы, поддерживают операцию начальной загрузки, во время которой процессор побайтно считывает команды с какого-либо внешнего устройства памяти (как правило, ППЗУ) через интерфейс памяти и записывает эти команды во внутреннюю память программы, формируя слова по 24 бита. Так как внешнее устройство запрограммировано на подачу байт в соответствующем порядке, то операция начальной загрузки может производиться автоматически при перезапуске или, в случае принудительного осуществления начальной загрузки, при помощи программных средств.
В некоторых системах, в которых управление процессором семейства ADSP-2100 осуществляется хост-машиной, начальная загрузка должна производиться непосредственно с хост-машины. В таких случаях именно хост-машина, а не ППЗУ является источником загружаемых во внутреннюю память байт информации. Процессоры семейства ADSP-2100, в которых имеется порт интерфейса хост-машины (например, ADSP-2111), могут автоматически выполнять операцию начальной загрузки через этот порт. Однако, если процессор не имеет порта интерфейса хост-машины, начальная загрузка может осуществляться через интерфейс памяти с использованием сигнала запроса шины по процедуре, которая будет рассмотрена ниже.
Данный пример демонстрирует наиболее простой способ загрузки программ с хост-машины во внутреннюю память программы процессора семейства ADSP-2100. Имеется несколько способов соединения цифрового сигнального процессора с хост-машиной. Использование какого-либо из этих способов зависит от строения порта ввода/вывода хост-машины, доступности линий порта ввода/вывода и уже имеющегося в системе объема логики декодирования адреса.
На рис. 12.1 приводится минимальная система, позволяющая осуществлять начальную загрузку процессора семейства ADSP-2100 через микроконтроллер. Из аппаратных средств в этой системе требуется только резистор на 5 кОм, который используется для поддержания высокого напряжения на выводеВMS (выбор начальной загрузки памяти) процессора.
Процессор семейства ADSP-2100 автоматически начинает выполнять процедуру начальной загрузки после перезапуска процессора (когда на выводе ММАР установлен низкий уровень) или при инициализации операции начальной загрузки при помощи программных средств. Когда процессор начинает выбирать байт из внешней памяти начальной загрузки (в данном случае из хост-машины), он выставляет сигнал BMS . По низкому уровню сигнала BMS триггер предварительно устанавливается, и на выходе Q появляется низкий уровень. Этому низкому уровню соответствует сигнал BR (запрос шины). После того, как процессор семейства ADSP-2100 опознает запрос шины и завершит выполнение текущего цикла, выполнение текущих операций процессора приостанавливается. В следующем цикле (после опознавания BR) процессор выставляет сигнал BG (предоставление шины).
Рис. 12.1 Начальная загрузка процессора семейства ADSP-2100 с хост-машины
Когда сигнал низкого уровня на входе D запишется в триггер по фронту тактового сигнала, выход Q становится высоким по уровню и снимает, таким образом, сигнал BR.
Вывод запроса шины процессора семейства ADSP-2100 (BR) используется для остановки и синхронизации процесса начальной загрузки. Хост-машина снимает запрос на предоставление шины, после чего процессор считывает один байт загружаемых данных. Во время операции считывания выставляется сигнал BMS, по которому сигнал BR выставляется вновь, и процессор семейства ADSP-2100 снова входит в состояние запроса шины. Работа процессора приостанавливается, пока он ожидает следующего байта данных. Механизм квитирования передачи каждого байта загружаемых данных обеспечивается тремя программируемыми битами порта микроконтроллера (РВ 8-10). Кроме того, биты РВ9 и РВ10 могут реализовываться как отображенный в карте памяти порт. Бит РВ8 используется для перезапуска процессора семейства ADSP-2100 после чего начинается операция начальной загрузки последнего. Обратите внимание, что, если РВ8 при подаче питания не низкий, то процессор будет выполнять неопределенные команды, пока РВ8 не станет низким.
Загружаемые байты подаются микроконтроллером либо через 8 битов порта (РВО-7), либо через отображенный в карте памяти порт. По завершению начальной загрузки биты РВО-7 должны находиться в третьем состоянии, чтобы исключить конфликтные ситуации при попытках процессора записывать данные во внешнюю память или периферийные устройства.
Для данной системы типична следующая процедура начальной загрузки:
- Цифровые эвм
- §1.2 Структуры типичных микроЭвм
- §1.3 Архитектура микро- и мини – эвм
- §1.4 Архитектура эвм
- §1.5 Ортогональность архитектуры микропроцессоров.
- §2. Микропрограммные устройства управления §2.1 Структура микропрограммных устройств
- §2.2 Способы записи микропрограмм
- 1) Гса должна содержать одну начальную, одну конечную вершину и конечное множество операторных и условных вершин;
- 2) Каждый выход гса соединяется только с одним входом;
- 3) Входы и выходы различных вершин соединяются дугами, направленными от выхода к входу;
- 4) Для любой вершины гса существует, по крайней мере, один путь из этой вершины к конечной вершине, проходящей через операторные и условные вершины в направлении соединяющих их дуг;
- §2.3 Микропрограммный принцип управления операциями
- 1) Определение формата операционной части мк;
- 2) Синтез формата адресной части мк;
- 3) Синтез структурной схемы автомата;
- 4) Построение карты программирования пзу или плм.
- §2.4 Синтез мпа с использованием “жёсткой” логики
- 2. Прибавить к содержимому сумматора первое частичное произведение.
- 3. К содержимому сумматора прибавить сдвинутое на разряд вправо второе частичное произведение.
- 4. Далее аналогично прибавить третье, четвертое и последующие частичные произведения.
- §2.5 Выбор схемы операционного устройства
- 1) Два регистра (регистр множимого rg2 и регистр множителя rg1);
- 2) Сумматор (5м);
- 3) Счетчик (ст) для подсчета числа суммирований. На рис. 2.9 показаны обозначения этих узлов на схемах.
- §3. Запоминающие устройства §3.1 Запоминающие устройства и их назначение
- §3.2Классификация и основные характеристики полупроводниковых зу
- §3.3 Статические озу
- §3.4 Динамические озу
- §3.5 Память на пзс
- §3.7 Функциональные схемы озу
- §3.8 Функциональные схемы пзу и ппзу
- §3.9 Организация многокристальной памяти
- §3.10 Программирование пзу
- §3.11 Программируемые логические матрицы
- §4. Процессоры и микропроцессоры §4.1Классификация микропроцессоров
- §5.Сравнение архитектур микропроцессоров
- §5.1 Архитектуры микропроцессоров.
- §5.2 Ортогональность архитектуры микропроцессоров.
- §5.3 Основные принципы построения устройств обработки цифровой информации
- Существует два основных типа управляющих автоматов:
- 1) Управляющий автомат с жесткой логикой.
- 2) Управляющий автомат с хранимой в памяти логикой.
- §5.4 Принципы организации арифметико – логических устройств.
- §5.5 Классификация алу
- 1) Для чисел с фиксированной запятой;
- 2) Для чисел с плавающей запятой;
- 3) Для десятичных чисел.
- §5.6 Структура и формат команд. Кодирование команд.
- 1) Команды арифметических операций для чисел с фиксированной и плавающей запятой;
- §6.Проектирование микро - эвм
- §6.1.Функциональные блоки и организация управления в микро - эвм §6.1.1Общие сведения
- §6.1.2. Структура операционного устройства
- §6.1.3. Структура устройства управления
- 1. Безусловный переход из адреса Ai по адресу Aj определенному одним из способов адресации (рис. 6.7,а).
- Однокристальные эвм §7.Описание микроконтроллеров 8051, 8052 и 80c51 §7.1 Вступление
- §7.2Специальные функциональные регистры
- §7.3 Структура и работа портов
- §7.3.1 Конфигурации ввода-вывода
- §7.3.2 Запись в порт
- §7.3.3 Загрузка и согласование портов.
- §7.3.4 Особенность чтения-модификации-записи
- §7.4.Доступ к внешней памяти
- §7.5 Таймер/счетчик
- Таймер 0 и Таймер 1
- Режим 0 (mode 0)
- М1 м0 Режим
- §7.5 Последовательный интерфейс
- §7.5.1 Многопроцессорные связи
- §7.5.2 Управляющий регистр последовательного порта
- §7.5.4 Скорость приема/передачи
- §7.5.5Использование таймера 1 для задания скорости приема/передачи
- Дополнительные сведения о режиме 0
- Дополнительные сведения о режиме 1
- Дополнительные сведения о режимах 2 и 3
- Прерывания
- §7.6 Структура уровней приоритета
- Перехват прерываний
- Внешние прерывания
- Время отклика
- Одношаговые операции
- Версии микросхем с сппзу
- Две схемы блокировки программной памяти
- Защита пзу
- Внутричиповые осцилляторы
- Осцилляторах mcs-51
- Внутренняя синхронизация
- §8.1.Введение
- §8.2. Обзор характеристик
- Отличия pic16c84 от pic16c5x
- Mаркировка при заказе
- Разводка ножек
- Прямая адресация.
- Проблемы с таймером
- Регистр статуса
- Программные флаги статуса
- Аппаратные флаги статуса
- Организация встроенного пзу
- Pc и адресация пзу
- Стек и возвраты из подпрограмм
- Данные в eeprom
- Управление eeprom
- Организация прерываний
- Регистр запросов и масок
- Внешнее прерывание
- Прерывание от rtcc
- Прерывание от порта rb
- Прерывание от eeprom
- Обзор регистров/портов
- 2) Прочитать порт в. Это завершит состояние сравнения.
- Проблемы с портами
- Обзор команд и обозначения
- Условия сброса
- Алгоритм сброса при вал. Питания
- Watch Dog таймер
- Типы генераторов.
- Генератор на кварцах
- Rc генератор.
- Внешнее возбуждение. Регистр option
- Подключения делителя частоты
- 1. Movlw b`xx0x0xxx` ;выбрать внутреннюю синхронизацию и новое
- Конфигурационное слово
- 01 Xt генератор
- 10 Hs генератор
- 11 Rc генератор
- Индивидуальная метка
- Защита программ от считывания
- 1) Запрограммируйте и проверьте работу исправного кристалла.
- 2) Установите защиту кода программы и считайте содержимое программной памяти в файл-эталон.
- 3) Проверяйте любой защищенный кристалл путем сравнения его программной памяти с содержимым этого эталона.
- Режим пониженного энергопотребления.
- 1. Внешний сброс - импульс низкого уровня на ножке /mclr.
- 2. Сброс при срабатывании wdt(если он разрешен)
- 3. Прерывания. (Прерывание с ножки int, прерывание при изменении порта b, прерывание при завершении записи данных eeprom).
- Максимальные значения электрических параметров
- 1. Полная рассеиваемая мощность не должна превышать 800 мВт для каждого корпуса. Рассеиваемая мощность вычисляется по следующей формуле:
- Скоростные характеристики:
- §8.3. Что такое pic ?....
- Hабор регистров pic
- Регистр косвенной адресации ind0
- Регистры общего назначения
- Сторожевой таймер wdt
- Тактовый геhератор
- Xt кварцевый резонатор
- От теории - к практике...
- Initb equ b'00000000' ; ; Рабочая секция ; ; начало исполняемого кода
- Пример программы
- Ассемблироваhие
- Программироваhие
- Набор команд pic
- Incf scratch,0 ;увеличить scratch на 1
- Iorwf dataport,1 ;установить биты в поpте b по маске w
- Iorlw 09h ;установить 0-й и 3-й биты Светодиоды покажут 00011001.
- Xorlw b'11111111' ;пpоинвеpтиpовать w Светодиоды покажут 11011111.
- Comf scratch,0 ;инвеpтиpовать scratch Светодиоды покажут 10101010.
- Специальные команды
- §9.Введение вAdsp §9.1. Обзор
- §9.2. Функциональные устройства
- §9.3. Интерфейс системы и памяти
- §9.4. Набор команд
- §9.5. Рабочие характеристики цифровых сигнальных процессоров
- §9.6. Базовая архитектура
- §9.7. Вычислительные устройства
- §9.8. Генераторы адреса и программный автомат
- §9.9. Шины
- §9.10. Другие устройства на кристалле
- §9.11. Последовательные порты
- §9.12. Таймер
- §9.13. Порт интерфейса хост-машины (adsp-2111, adsp-2171, adsp-21msp5x)
- §9.14. Порты прямого доступа к памяти (adsp-2181)
- §9.15. Аналоговый интерфейс
- §9.16. Система программно – аппаратных средств отладки процессоров семействаAdsp - 2100
- §9.17. Генераторы адреса и программный автомат
- §10Вычислительные устройства §10.1. Обзор
- Последовательности двоичных символов
- Беззнаковый формат
- Знаковые числа в дополнительном коде
- §10.2. Арифметико – логическое устройство (алу)
- Блок-схема алу
- Стандартные функции
- Регистры ввода/вывода алу
- Возможность операций с повышенной точностью
- Режим насыщения алу
- Режим фиксации переполнения алу
- Деление
- §10.3. Умножитель – накопитель (умножитель)
- Арифметические операции умножителя
- Арифметические операции устройства сдвига
- Операции умножителя-накопителя
- X*y Умножение операндов х и y
- Форматы ввода данных
- Регистры ввода/вывода умножителя-накопителя
- §10.4. Устройство циклического сдвига
- Денормализация
- Нормализация
- §11. Управление программой
- §11.1. Обзор
- §11.2. Программный автомат
- §11.3 Команды управления программой
- §11.4. Контроллер прерываний
- §11.5. Условные команды
- §12. Дополнительное аппаратное обеспечение §12.1. Обзор
- §12.2. Начальная загрузка через хост – машину с использованием процедур запроса и предоставления шины
- 1) Для перезапуска процессора семейства adsp-2100 pb8 устанавливается низким.
- §12.4. Сопряжение последовательного порта с цап
- §12.5. Сопряжение последовательного порта с ацп
- §12.6. Сопряжение последовательного порта с другим последовательным портом
- §12.7. Сопряжение микрокомпьютера 80с51 с портом интерфейса хост – машины
- §12.8. Обзор
- §13. Программное обеспечение §13.1. Процесс отладки системы
- §14. Система команд мп типа к580ик80
- §14.1 Способы адресации мп
- §14.2 Команды мп
- §14.3 Пояснения к некоторым командам
- §15. Архитектура микропроцессора z-80
- §15.1 Назначение выводов
- §15.2 Логическая организацияZ80
- Устройство управления.
- Регистры пользователя (основные регистры).
- Регистровая пара hl.
- Набор альтернативных регистров.
- Арифметико-логическое устройство (алу).
- §15.3 Система команд микропроцессора z – 80. Команды и данные.
- 3. Двухбайтовый адрес (addv).
- 4. Однобайтовая константа смещения.
- Группа команд
- Группа 1. Команда «нет операции»
- Группа 2. Команды загрузки регистра константами.
- Группа 4.Команды загрузки регистров из памяти.
- Группа 5.Команды записи в память содержимого регистра или константы.
- Группа 6.Команды сложения.
- Группа 7.Команды вычитания.
- Группа 8.Команды сравнения.
- Подгруппа b. Команда or.
- Подгруппа c. Команда xor.
- Группа 11. Команда стека.
- 2.Адрес addr затем записывается в счетчик команд, и выполняется программа.
- 3.По команде ret осуществляется возврат из программы.
- §16.Микросхема 80130
- §17.Микросхема 80186
- §18.Микросхема 80286
- Verr — Проверить доступ по считыванию
- Verw — Проверить доступ по записи
- Определение состояния цикла шины процессора 80286
- §19.Микропрцессоры серииiX86 фирмы intel Выбор в программе на Ассемблере типа процессора
- §19.1. Процессоры 80186 и 80188
- Новые инструкции
- Инструкции pusha и popa
- Инструкции enter и leave
- Инструкция bound
- Инструкции ins и outs
- Расширенные версии инструкций процессора 8086
- Imul si,10 это просто сокращенная форма инструкции:
- §19.2. Процессор 80286
- §19.3. Процессор 80386
- Новые типы сегментов
- Новые регистры
- Новые сегментные регистры
- Новые режимы адресации
- Процессор 80386, новые инструкции
- Проверка битов
- Просмотр битов
- Преобразование данных типа dword или qword
- Сдвиг нескольких слов
- Условная установка битов
- Загрузка регистров ss, fs и gs
- Расширенные инструкции
- Специальные версии инструкции mov
- Новые версии инструкций loop и jcxz
- Новые версии строковых инструкций
- Инструкция iretd
- Инструкции pushfd и popfd
- Инструкции pushad и popad
- Новые версии инструкции imul
- Imul ebp,ecx,100000000h а следующая инструкция умножает ecx на ebx, записывая результат в edx:eax:
- Технический обзор Новое поколение процессоров фирмы intel
- Pentium процессор. Технические нововведения.
- Архитектура Pentium процессора
- Суперскалярная архитектура.
- Блок предсказания правильного адреса перехода.
- Высокопроизводительный блок вычислений с плавающей запятой.
- Расширенная 64-битовая шина данных.
- Средства разделения памяти на страницы.
- Определение ошибок и функциональная избыточность.
- Управление производительностью.
- §22.Введение в команды mmx.
- §22.1. Регистры
- §22.2. Префиксы
- §22.3.Распаровка (paring).
- §22.4. Типы данных
- §22.5. Краткое описание команд
- §23.Логическая структура микропроцессорной системы на основе комплекта бис секционного микропроцессора §23.1. Комплект бис секционного микропроцессора.
- §23.2. Бис микропрограммного управления на основе программируемой логической матрицы (плм).
- §23.3. Комплект бис для построения электронной системы.
- §24. Обзор секционируемых мпк бис §24.1. Микропроцессорный комплект серии кр1802
- §24.1.1. Восьмиразрядная микропроцессорная секция (мс) кр1802вс1.
- §24.1.2. Двухадресная память общего назначения кр1802ир1.
- §24.1.3. Шестнадцатиразрядный арифметический расширитель кр1802вр1.
- §24.1.4. Схема обмена информацией (ои) кр1802вв1.
- §24.1.5. Бис интерфейса (бис и) кр1802вв2.
- §24.1.6. Сумматор (см) к1802им1.
- §24.1.7. Км1802врз—умножитель двух 8-разрядных чисел.
- §24.1.8. Км1802вр4—умножитель двух 12-разрядных чисел.
- §24.1.9. Км1802вр5—умножитель двух 16-разрядных чисел.
- §24.2. Микропроцессорный комплект серии к1804
- §24.2.1. Центральные процессорные элементы к1804вс1 и к1804вс2
- §24.3. Микропроцессорный комплект серии к587 §24.3.1. Арифметическое устройство к587ик2.
- §24.3.2. Управляющая память к587рп1.
- §24.3.3. Устройство обмена информации к587ик1.
- §24.3.4. Арифметический расширитель к587икз.
- §24.3.5. Архитектурные особенности построения управляющей микро-эвм на базе мпк серии к587