logo
Автоматическая система регулирования с П-регулятором

6. Выбор и расчет параметров настройки регуляторов

7. Разомкнутые и замкнутые системы

8. Исследование систем на устойчивость

9. Построение переходных процессов в замкнутой системе

10. Оценка качества системы

11. Выводы

Литература

3. ОБЯЗАТЕЛЬНЫЕ РАСЧЕТЫ (БЕЗМАШИННЫЕ):

- построение статической модели объекта в виде полиномов 1-го и 2-го порядков;

- расчет коэффициента передачи объекта при 10, 50, 90 % номинального режима;

- построение динамической модели объекта в виде передаточной функции 1-го порядка с запаздыванием и без запаздывания;

- формирование математических моделей объекта;

- расчет частотных характеристик объекта;

- выбор и расчет регуляторов;

- формирование передаточных функций разомкнутой и замкнутых систем;

- исследование устойчивости замкнутых систем;

- приведение к системе дифференциальных уравнений;

- оценка качества систем.

4. ПРОВЕРОЧНЫЕ, ОКОНЧАТЕЛЬНЫЕ, ПОЛНЫЕ РАСЧЕТЫ

выполнить на ПЭВМ в электронной книге или в любой из пригодных систем.

ЛИТЕРАТУРА

1. Наладка автоматических систем и устройств управления технологическими процессами: Справочное пособие/ Под ред. А. С. Клюева. -М.: Энергия, 1977. - 400 с.

2. Полоцкий Л. М., Лапшенков Г. И. Автоматизация химических производств. Теория, расчет и проектирование систем автоматизации. - М.: Химия, 1982. - 296 с.

3. Дурновцев В. Я. Расчет АСР /Электронная книга. Северск, СТИ ТПУ, 1997. - 188 с.

4. Дурновцев В.Я., Ширяев А. А. Расчет автоматических систем регулирования. 1. Расчет линейных АСР. - Указания по выполнению индивидуальных заданий и курсовых проектов. -Томск: ТПИ, 1989. - 92 с.

5. Дурновцев В.Я., Ширяев А. А. Линейные автоматические системы регулирования. 1. Объекты АСР. - Методические указания. - Томск: ТПИ, 1989. - 209 с.

6. Дурновцев В.Я., Ширяев А. А. Использование электронных таблиц в инженерных расчетах./ Пособие. - Северск: СТИ ТПУ, 1997. - 47 с.

Дата выдачи задания: 20 февраля 2002 г.

Введение

Всякий технологический процесс характеризуется определенными физическими величинами. Для обеспечения требуемого режима работы эти величины необходимо поддерживать постоянными или изменять по тому или иному закону. Физические величины, определяющие ход технологического процесса, называются параметрами технологического процесса. Параметрами технологического процесса могут быть давление, температура, уровень жидкости, концентрация вещества, расход вещества или энергии, скорость изменения какой - либо величины и т. п. Параметр технологического процесса, который необходимо поддерживать постоянным или изменять по определенному закону, называется регулируемой величиной.

В системе ручного регулирования выходное воздействие не оказывает без вмешательства оператора никакого влияния на входное воздействие. Состояние входа системы приводится в соответствие с состоянием ее выхода действиями оператора. Таким образом, лишь благодаря работе оператора система регулирования замыкается. Следовательно, для того чтобы полностью автоматизировать процесс регулирования, необходимо систему сделать замкнутой без вмешательства оператора.

Автоматическим управление называется процесс, при котором операции выполняются посредством системы, функционирующей без вмешательства человека в соответствии с заданным алгоритмом. Автоматическая система с замкнутой цепью воздействия, в которой управляющее воздействие вырабатывается в результате сравнения истинного значения управляемой величины с заданным ее значением, называется АСР. Процесс, посредством которого одну или несколько регулируемых величин приводят в соответствие с их постоянными изменяющимися по определенному закону заданными значениями и при этом указанное соответствие достигается техническими средствами путем выработки воздействия на регулируемые величины. Процесс автоматического регулирования реализуется АСР. Автоматическая система структурно может быть представлена по-разному. В общем случае под структурой АСР понимается совокупность частей автоматической системы, на которые она может быть разделена по определенным признакам, и путей передачи взаимодействий между ними, образующих автоматическую систему. Простейшая составная часть структурной схемы АСР, отображающая путь и направление передачи воздействия между частями автоматической системы, на которые эта система разделена в соответствии со структурной схемой, называется связью структурной схемы. Связь структурной схемы АСР, образуемая основной цепью воздействия между участками этой цепи, называется основной связью. Связь структурной схемы АСР, образующая путь передачи воздействий в дополнение к основной цепи воздействий или какому - либо участку, называется дополнительной связью. Дополнительная связь структурной схемы АСР, направленная от выхода к входу рассматриваемого участка цепи воздействий, называется дополнительной обратной связью (или просто обратной связью). Обратная связь, замыкающая системы, передает результат измерения выходной величины на вход системы. Эта выходная величина представляет собой физическую величину, подлежащую регулированию (х - регулируемая величина или управляемая величина). Входная величина g (t) и f (t) являются соответственно задающим и возмущающим воздействием. Задача системы состоит в том, чтобы возможно точнее воспроизводить на выходе х задаваемый закон изменения g (t) и возможно полнее подавлять влияние возмущающего воздействия f (t), а также других внешних и внутренних помех, если они имеются. Для этой цели измеренная выходная величина х сравнивается через измеритель у = к . х с входной величиной g (t). Получается рассогласование (ошибка).

Рассогласование служит источником воздействия на систему, причем система работает на уничтожение или сведения к допустимо малому значению величины этого рассогласования, то есть величины ошибки системы. Случаю g (t) = const соответствует собственно автоматическое регулирование на поддержание постоянного значения регулируемой величины. Это типичная система регулирования по заданной настройке регулятора.

Важно отметить, что в замкнутых системах автоматического управления и регулирования, как правило, не бывает спокойного состояния равновесия. Все время имеются какие-то внешние возмущающие воздействия, порождающие рассогласование, которое заставляет систему работать. Поэтому важнейшим элементом проектирования таких систем является исследование динамических процессов, описываемых обычно системой дифференцируемых уравнений, отражающих поведение всех звеньев системы. Особенностью, усложняющей расчет динамики системы, является то, что в замкнутой системе все физические величины, представляющие воздействие одного звена на другое, связаны в единую замкнутую цепь.

Автоматические системы регулирования должны обеспечивать:

устойчивость системы при любых режимных ситуациях объекта;

минимальное время регулирования;

минимальные динамические и статические отклонения регулируемой величины, не выходящие по уровню за допустимые эксплуатационные пределы.

Выполнение этих требований достигается в результате обоснованного использования одного из законов регулирования - математической зависимости между входной (отклонением регулируемой величины от предписанного значения) и выходной (регулирующим воздействием) величинами регулятора.

1. Построение статической характеристики объекта

1.1 Постановка задачи

Статические характеристики определяют зависимость между выходной и входной величинами звена или системы в установившемся состоянии.

Необходимо найти неизвестные параметры функции f(x) и некоторый минимизирующий критерий близости f(x) к экспериментальным данным y.

Таблица 1

Статическая характеристика объекта регулирования.

i

1

2

3

4

5

6

7

8

9

10

X

0

1

2

3

4

5

6

7

8

9

Y

0

0,1

0,5

1

1,5

2

2,5

3

3,2

3,5

Для построения статической характеристики необходимо табличные данные аппроксимировать полиномами первого и второго порядков.

Затем необходимо рассчитать сумму квадратов отклонений для каждой статистической характеристики объекта, и выбрать такую характеристику, у которой сумма квадратов отклонений будет наименьшей. Затем для этой модели рассчитаем коэффициент передачи объекта.

1.2 Аппроксимация полиномом первого порядка

Модель первого порядка описывается уравнением вида:

y=a•x+b

Для нахождения коэффициентов а и b составим систему линейных алгебраических уравнений, причем число уравнений в системе равно числу состояний объекта в эксперименте.

Для решения данной системы алгебраических уравнений воспользуемся матричным методом наименьших квадратов. Составим матрицы входных и выходных сигналов:

Получим систему с двумя неизвестными: X . A = Y

Транспонируем матрицу Х:

Умножив слева обе части исходной системы на транспонированную матрицу коэффициентов, получим систему, число уравнений в которой равно числу неизвестных, а решение этой системе будет доставлять минимум критерий оптимизации.

XT . X . A = XT . Y

Получим систему двух линейных алгебраических уравнений первого порядка:

Найдем главный определитель матрицы:

Найдем вспомогательные определители системы:

Найдем коэффициенты а и b:

Таким образом, получим полином:

у =0.428 . х - 0.198

Для оценки полученного полинома вычислим значения функции и сравним их с экспериментальными данными.

Результаты вычисления сведем в таблицу. таблица 2

i

x

y

yi

Дyi

1

0

0

-0.198

0.198

2

1

0.1

0.203

-0.130

3

2

0.5

0.658

-0.158

4

3

1

1.086

-0.086

5

4

1.5

1.514

-0.014

6

5

2

1.942

0.058

7

6

2.5

2.370

0.130

8

7

3

2.798

0.202

9

8

3.2

3.226

-0.026

10

9

3.5

3.654

-0.154

Сумма квадратов отклонений:

уi 2 = 0.174

Ниже приведен проверочный расчет модели объекта первого порядка на ЭВМ в системе MathCad.

1.3 Аппроксимация полиномом второго порядка

Модель второго порядка описывается уравнением вида:

у = а . х + b . х + с.

Для нахождения коэффициентов а, b, с, удовлетворяющих всем состояниям объекта регулирования составим систему алгебраических уравнений второго порядка, причем число уравнений в системе равно числу состояний объекта в эксперименте:

Для решения данной системы алгебраических уравнений воспользуемся матричным методом наименьших квадратов. Составим матрицы входных и выходных сигналов:

Получим систему с тремя неизвестными: X . A = Y

.

Решим матричное уравнение:

Х т . Х . А = Х т . У

где А - матрица коэффициентов полинома второго порядка.

Получим систему трех алгебраических уравнений

Решив ее, определим коэффициенты a, b, c.

Найдем главный определитель системы:

Найдем вспомогательные определители системы:

Найдем коэффициенты a,b,c:

Таким образом, получили полином второго порядка:

y = -0.00152 . xi2 + 0.442121 . xi -0.21636

Для оценки полученного полинома вычислим значения функции и сравним их с экспериментальными данными:

Полученные результаты сведем в таблицу 3

i

x

y

yi

Дy

1

0

0

-0.216

0.216

2

1

0.1

0.224

-0.124

3

2

0.5

0.662

-0.162

4

3

1

1.096

-0.096

5

4

1.5

1.528

-0.028

6

5

2

1.956

0.044

7

6

2.5

2.382

0.118

8

7

3

2.804

0.196

9

8

3.2

3.224

-0.024

10

9

3.5

3.640

-0.14

Сумма квадратов отклонений равна: уi 2 = 0.173

Ниже приведен проверочный расчет модели объекта первого порядка на ЭВМ в системе MathCad.

Сравнивая суммы квадратов отклонений видно, что полином второго порядка лишь немногим точнее описывает поведение объекта, чем полином первого порядка. Из чего следует, что поведение объекта подчиняется уравнению очень близкому уравнению линии. Для расчетов используем уравнение найденное с помощью полинома второго порядка.

1.4 Расчет коэффициентов передачи

Для статической модели первого порядка коэффициент передачи определяется как производная от выходной величины:

Коэффициент передачи объекта показывает в какую сторону и в какой степени происходит изменение сигнала при прохождении его через объект, то есть усилительные свойства объекта.

Для статической модели первого порядка коэффициент передачи определяется как производная от выходной величины:

Для статической модели второго порядка коэффициент передачи определяется как производная от выходной величины:

Расчет коэффициентов передачи производим при 10, 50 и 90%

Рассчитаем значение коэффициента передачи при 10 % по формуле:

где - максимальное установившееся значение сигнала.

- минимальное значение сигнала.

Подставляя полученные данные, получим:

Выбираем х1, т.к только он входит в диапазон экспериментальных значений. Подставим значение х1 в (1.2) и получим значение коэффициента передачи при 10 % номинального режима:

Рассчитаем значение коэффициента передачи при 50 % по формуле:

Подставляя полученные данные, получим:

Выбираем х1, т. к только он входит в диапазон экспериментальных значений. Подставим значение х1 в (1.2) и получим значение коэффициента передачи при 50 % номинального режима:

Рассчитаем значение коэффициента передачи при 90 % по формуле:

Выбираем х1, т. к только он входит в диапазон экспериментальных значений. Подставим значение х1 в (1.2) и получим значение коэффициента передачи при 90 % номинального режима:

Результаты расчета сведены в таблицу.

Таблица 4

Коэффициенты передачи.

10%

50%

90%

х

1.287

4.518

7.824

к

0.438

0.428

0.418

Ниже приведен проверочный расчет коэффициентов передачи объекта на ЭВМ в системе MathCad.

2. Динамическая модель объекта

2.1 Постановка задачи

Динамическая модель связывает изменение входных и выходных величин во времени, то есть отражает протекание переходного процесса.

Для получения динамической характеристики объекта регулирования необходимо выполнить следующие действия:

- задаться рядом значений времени t;

- подав на вход объекта возмущение, для каждого ti зарегистрировать значение выходного сигнала yi.

Полученная, таким образом, динамическая характеристика заданного объекта регулирования, приведена в табл. 5.

Таблица 5

Динамическая характеристика объекта регулирования

i

1

2

3

4

5

6

7

8

9

10

t

0

1

2

3

4

5

6

7

8

9

Y

0

0

0.5

0.71

0.8

0.91

0.98

0.99

0.995

1

Для получения аналитической зависимости, заданную таблично динамическую характеристику необходимо аппроксимировать экспоненциальным выражением первого порядка. Затем, по наименьшему значению суммы квадратов отклонений для характеристик без запаздывания и с запаздыванием, нужно выбрать наиболее приближенную к экспериментальным данным динамическую характеристику.

После расчета выполненного вручную следует проверить его на ПЭВМ в системе MathCad, а также произвести расчет динамической характеристики второго порядка и выбрать наиболее точную.

2.2 Модель объекта первого порядка без запаздывания

Динамическая модель первого порядка без запаздывания представляет собой неоднородное дифференциальное уравнение первого порядка:

(2.1)

где T - постоянная времени объекта;

k - коэффициент передачи при 50% номинального режима.

Решением уравнения (2.1) будет экспоненциальная зависимость сигнала на выходе от времени:

(2.2)

где y0=0 - начальное состояние выхода объекта;

k.x=yуст.=10 - установившееся состояние выхода объекта.

Преобразовав выражение (2.2), получим:

(2.3)

Обозначим левую часть выражения (2.3) как . Значения и их натуральные логарифмы приведены в табл. 6.

Таблица 6

Значения и

i

1

2

3

4

5

6

7

8

9

10

yi

0

0

0.5

0.71

0.8

0.91

0.98

0.99

0.995

1

1

1

0.5

0.29

0.2

0.09

0.02

0.01

0.005

0

0

0

-0.693

-1.238

-1.609

-2.408

-3.912

-4.605

-5.298

-?

Преобразовав выражение (2.3), получим:

откуда по методу наименьших квадратов найдем постоянную времени:

Таким образом динамическая характеристика первого порядка без запаздывания будет иметь вид:

Вычислим аналитические значения функции, их отклонения от экспериментальных значений, а также квадраты отклонений и сведем их в

Таблица 7

Результаты расчета

i

1

2

3

4

5

6

7

8

9

10

yi

0

0

0.5

0.71

0.8

0.91

0.98

0.99

0.995

1

yiанал

0

0.46

0.708

0.843

0.915

0.954

0.975

0.987

0.993

0.996

yi

0

-0.46

-0.208

-0.133

-0.115

-0.044

4.8•10-3

3.4•10-3

2.2•10-3

3.9•10-3

0.000

0.212

0.043

0.018

0.013

1.9•10-3

2.3•10-5

1.1•10-5

4.9•10-6

1.5•10-5

Далее находим сумму квадратов отклонений:

Динамическая модель объекта первого порядка без запаздывания является наименее точной, поэтому ее применение не целесообразно при моделировании динамики объекта. Ниже приведен проверочный расчет динамической модели объекта первого порядка без запаздыванием и модели второго порядка без запаздыванием на ЭВМ в системе MathCad.

2.3 Модель объекта первого порядка с запаздыванием

Динамическая модель первого порядка с запаздыванием представляет собой неоднородное дифференциальное уравнение первого порядка:

(2.4)

где T - постоянная времени объекта;

k - коэффициент передачи при 50% номинального режима;

- время запаздывания.

Решением уравнения (2.1) будет экспоненциальная зависимость сигнала на выходе от времени:

(2.5)

где y0=0 - начальное состояние выхода объекта;

k.x=yуст.=10 - установившееся состояние выхода объекта.

Проведем преобразования, аналогичные модели без запаздывания

или запишем в виде системы :

(2.6)

где берется из табл. 7.

Так как , и , то все уравнения содержащие эти элементы в расчете участвовать не будут.

Решим систему (2.6) методом наименьших квадратов. Составим матрицы:

- искомых величин:

- правой части системы:

- левой части системы:

- произведение

- произведение

Таким образом получили матричное уравнение:

Находим главный определитель:

Подставляя матрицу поочередно в первый и второй столбец матрицы , находим вспомогательные определители:

Находим постоянную времени и время задержки:

Таким образом динамическая характеристика первого порядка с запаздыванием будет иметь вид:

Вычислим аналитические значения функции, их отклонения от экспериментальных значений, а также квадраты отклонений, причем значения функции при учитывать не будем. Результаты сведем в табл. 8.

Таблица 8

Результаты расчета

i

1

2

3

4

5

6

7

8

9

10

yi

0

0

0.5

0,71

0,8

0,91

0,98

0,99

0,995

1

yiанал

0

0

0.199

0.565

0.764

0.872

0.93

0.962

0.98

0.989

yi

0

0

0.301

0.145

0.036

0.038

0.05

0.028

0.015

0.011

0

0

0.090493

0.020928

0.001291

0.001448

0.002451

0.000769

0.00024

0.000124

Далее находим сумму квадратов отклонений:

.

Так как сумма квадратов отклонений у модели с запаздыванием меньше, чем у модели без запаздывания, то ее использование позволяет более точно описывать протекание переходного процесса.

Расчет на ЭВМ моделей более высоких порядков показывает, что наименьшее значение суммы квадратов отклонений будет у модели второго порядка. Поэтому в дальнейших расчетах будем выполнять все действия именно для модели второго порядка.

Ниже приведен проверочный расчет динамической модели объекта первого порядка с запаздыванием и модели второго порядка с запаздыванием на ЭВМ в системе MathCad.

3. Построение математической модели

Передаточная характеристика объекта представляет собой отношение выходной величины к входной величине.

Передаточная характеристика объекта второго порядка с запаздыванием отличается от характеристики первого порядка наличием в знаменателе дроби квадрата суммы:

После подстановки известных численных значений и всех преобразований, получим:

Приведем полученное выражение к нормальной системе дифференциальных уравнений первого порядка и построим математическую модель объекта на ЭВМ в системе MathCad.

4. Аналитическое решение

Для отыскания аналитического решения решим характеристическое уравнение:

0,931 р2 + 1,93 р + 1 = 0 (4.1)

p1 = -1,781; p2 = - 0,290 - корни характеристического уравнения.

Ввиду того, что корни характеристического уравнения кратные подставим их в выражение вида:

u(t) = kx . [1 - [1 + p . (t - ф) ] . e p(t - ф) ] (4.2)

где к - коэффициент передачи при 50% номинального режима

р - корни характеристического уравнения (4.3)

t - соответствующий момент времени

ф - время запаздывания

Подставляя соответствующие значения к, р, t, ф получим график переходного процесса в объекте.

Ввиду сложности расчеты производятся на ПЭВМ (см. распечатку)

5. Частотные характеристики

Частотные характеристики объекта связаны с его передаточной функцией следующим образом:

где к = к (50%) = 0.428- коэффициент передачи при 50%:

Т = 0.965- постоянная времени:

= 0.715- время запаздывания.

е-фp = cos( . ) - j . sin( . ).

Заменив, в выражении для объекта второго порядка величину p на мнимую величину j, получим комплексную функцию W(j).

Преобразовав выражение (4.1) получим, что:

Обозначим в формуле (5.2) :

- Вещественная частотная

характеристика системы

- мнимая частотная

частотная характеристика системы

Подставив R() и I() в уравнение (5.2):

W(j) = R() + j .I()

Составим соотношения, связывающие между собой частотные характеристики :

где А() - амплитудно-частотная характеристика

L() - логарифмическая амплитудно-частотная характеристика.

F() - фазочастотная характеристика

По формулам (5.3) - (5.5) находим значения для построения частотных характеристик. Эти значения сведены в таблицу 5.1 стр. 30.

Ниже приведен расчет частотных характеристик объекта на ЭВМ в системе MathCAD . Расчет произведен в диапазоне частот 0...2 c-1 для 100 точек. Также представлены графики при следующих характеристик:

- амплитудно-частотной;

- логарифмической амплитудно-частотной;

- фазо-частотной;

- амплитудно-фазо-частотной.

Расчет расширенных частотных характеристик

При расчете расширенных частотных характеристик вместо замены производят замену , где m=0,221 - степень колебательности системы. Введем обозначение:

где

Далее, аналогично обычным частотным характеристикам, задавшись рядом частот, подаваемых на вход объекта, производим расчет расширенной амплитудно-частотной характеристики по формуле:

Затем рассчитываем расширенную фазо-частотную характеристику по формуле:

.

Ниже приведен расчет расширенных частотных характеристик объекта на ЭВМ в системе MathCAD . Расчет произведен в диапазоне частот 0...2 c-1 для 100 точек. Также представлены графики при следующих характеристик:

- расширенной амплитудно-частотной;

- расширенной амплитудно-фазо-частотной.