Необходимые и достаточные условия существования финальных вероятностей
Для существования финальных вероятностей одного условия недостаточно, требуется выполнение ещё некоторых условий, проверить которые можно по графу состояний, выделив в нём так называемые существенные и несущественные состояния.
Определение. Состояние Si называется существенным, если нет другого состояния Sj, т. е. такого, что, перейдя однажды каким-то способом из Si в Sj, система уже не может вернуться в Si.. Все состояния, не обладающие таким свойством, называются несущественными.
Рассмотрим примep, представленный на рисунке 2.3.
Рис. 2.3. Существенные и несущественные состояния системы
Состояния S1, S2 и S5 – несущественные, так как из S1 можно уйти, например, в состояние S2 и не вернуться, а из состояния S2 в состояние S3 или S4 и не вернуться, аналогично из состояния S5 в состояние S6 и S7. Состояния S3, S4, S6 и S7 – существенные состояния.
Теорема. При конечном числе состояний для существования финальных вероятностей необходимо и достаточно, чтобы из каждого существенного состояния можно было (за какое-то число шагов) перейти в каждое другое существенное состояние.
Граф из примера (рис. 2.3) этому условию не удовлетворяет, так как из существенного состояния S4 нельзя перейти в существенное состояние S7.
Если система S имеет конечное число состояний, то для существования финальных вероятностей достаточно, чтобы из любого состояния системы можно было (за какое-то число шагов) перейти в любое другое состояние.
Если число состояний бесконечно, то это условие перестаёт быть достаточным, и существование финальных вероятностей зависит не только от графа состояний, но и от интенсивности .
- Имитационное моделирование систем
- Предисловие
- Список сокращений
- Введение
- Глава 1. Основные понятия моделирования систем, классификация моделей и методов с точки зрения философии, моделирование представляет собой один из методов познания мира.
- 1.1. Основные понятия теории моделирования
- 1.2. Основные методы моделирования
- 1.3. Классификация моделей
- Глава 2. Математическое моделирование систем с использованием марковских случайных процессов
- 2.1. Элементы теории марковских случайных процессов, используемые при моделировании систем
- 2.2. Марковские цепи
- 2.3. Непрерывные цепи Маркова
- 2.4. Финальные вероятности состояний
- Необходимые и достаточные условия существования финальных вероятностей
- 2.5. Математическое представление потока событий
- 2.6. Компоненты и классификация моделей систем массового обслуживания (смо)
- 2.7. Расчёт основных характеристик смо на основе использования их аналитических моделей
- Одноканальные системы с отказами
- Одноканальные системы с ограниченной очередью
- Многоканальные системы с отказами
- Многоканальные системы с ограниченной очередью
- Контрольные вопросы и задания
- Глава 3. Имитационное моделирование в среде gpss
- 3.1. Общие сведения о языке gpss
- Основные объекты языка gpss
- 3.3. Основные блоки языка gpss
- Поступление транзактов в модель
- Уничтожение транзактов
- Моделирование работы одноканальных устройств
- Моделирование очередей
- Моделирование многоканальных устройств (мку)
- Изменение маршрута движения транзактов
- Разработка модели и процесс моделирования в gpss. Пример создания модели
- Управление процессом моделирования
- Объекты вычислительной категории языка: переменные и функции. Сохраняемые ячейки
- Определение и использование функций
- Работа с параметрами транзакта, приоритеты
- Блок mark
- Применение в моделях копий и организация синхронизации движения транзактов
- Использование блока test
- Контрольные задания по моделированию Моделирование систем с условием перераспределения заявок в заданном статистическом режиме
- Заключение
- Библиографический список
- Основные элементы стандартного отчёта
- Системные числовые атрибуты (сча)
- Сча транзактов
- Сча блоков
- Сча одноканальных устройств
- Сча очередей
- Сча таблиц
- Сча ячеек и матриц ячеек сохраняемых величин
- Сча вычислительных объектов
- Сча списков и групп
- 10. Какое действие выполняет этот оператор: transfer both,lab1,lab2
- 11. Какое действие выполняет этот оператор: transfer 0.4,lab1,lab2
- 12. Правильно ли описана эта команда: transfer ,met:
- 13. Какое действие выполняет этот блок: lines1 storage 2
- Индивидуальные зачётные задания по имитационному моделированию систем
- 4. Реорганизация заправочной станции
- 8. Модель швейного цеха
- 10. Моделирование работы заправочной станции
- 11.Моделирование работы станции скорой помощи
- 13. Модель автобусной остановки
- 14.Моделирование работы кафе
- 15. Задача о конвейере
- 17.Моделирование цеха обработки
- Алфавитно-предметный указатель
- Рассказова Марина Николаевна имитационное моделирование систем
- 644099, Омск, Красногвардейская, 9