logo search
Uchebnoye posobiye_2013

3.2.2. Гальваническое влияние по контурам заземления

На рис. 3.9, а показаны два прибора и , пространственно разделенные друг от друга. Они могут находиться в одном или разных зданиях. По условиям техники безопасности корпусы приборов должны быть заземлены. Имеющийся контур полезного сигнала также заземляется в двух местах, у приборов. Между точками1 и 2 может возникнуть разность потенциалов, обусловленная током в контуре заземления, например током замыкания на землю или током молнии (на рис. не показано). Эта разность потенциалов вызывает ток помехиIst. На внутреннем сопротивлении входной цепи прибора ZS возникает напряжение помехи , наложенное на входной сигнал. При синусоидальной форме напряжения напряжение помехи рассчитывается по формуле (рис. 3.9, б):

При этом предполагается, что полное сопротивление линии пренебрежимо мало по сравнению с сопротивлениями .

Если Zs » ZQ, то а при Zs = ZQ .

Мероприятия по снижению влияния по цепям заземления заключаются в снижении разности потенциалов U12 за счет уменьшения сопротивления между точками 1 и 2 (рис. 3.9.).

Рис. 3.9. Гальваническое влияние через замкнутую петлю заземления: а - схема устройства; б – схема, поясняющая формирование напряжения помехи

Это достигается, например, выполнением пола в виде проводящей эквипотенциальной поверхности F (рис. 3.10, а), соединение приборов массивными проводниками РА (рис. 3.10,б) или же экранированием сигнальных линий с заземлением экранов

Рис. 3.10. Снижение гальванического влияния при помощи заземленной плоскости (а) или массивного проводника РА, соединяющего точки заземлений приборов G1 и G2 (б)

у обоих концов , а также уменьшением тока Ist. Для этого существует ряд возможностей. Одной из них является| разделение контуров заземления, например прибора G1 (рис. 3.11, а). Однако при этом между сигнальным контуром и корпусом прибора остается емкостная связь Zc. В