3.3.2. Контуры с общим проводом системы опорного потенциала
Такие контуры типичны для аналоговых и цифровых схем. В качестве примера на рис. 3.13, а приведена логическая схема, в которой может произойти непредусмотренное изменение состояния переключающего элемента при изменении сигнала на выходе элемента А из-за наличия паразитной емкости С13.
На рис. 3.13,б приведена соответствующая схема замещения. Принимая Rs>> rq, записываем напряжение помехи в операторной форме:
Рис. 3.13. Емкостное влияние контуров с общим проводом системы опорного потенциала 2, 4:
а - схема с элементами логики; б - схема замещения; 1,2 - влияющий контур; 3, 4 - контур, испытывающий влияние; С13 - паразитная емкость связи
(3.11)
Решение этого уравнения имеет вид
. (3.12.)
В этих уравнениях представляет собой постоянную скорость линейно возрастающего выходного напряжения элементаА в интервале (рис.3.14, а).
Рис. 3.14. Выходной сигнал элемента А на рис. 3.13, а (а) и сигнал помехи ust в интервале времени (б)
Изменение во времени напряжения помехи согласно (3.12) показано на рис. 3.14, б. Если постоянная времени максимально возможное напряжение помехи определяется по формуле:
. (3.13)
Емкость связи С13, входящая в уравнения (3.11) - (3.13), определяется геометрическими размерами и топологией проводников. В простейшем случае проводники диаметром D и длиной , расположенные параллельно друг другу на расстоянии (рис. 3.15), имеют емкость связи
Реальные значения емкости С13 составляют от 5 до 100 пФ/м.
Рис. 3.15. Параллельно проложенные цилиндрические проводки (а) и зависимость погонной индуктивности от отношения d/D (б)
Например, при С13 = 100 пф/м, rq = 50 Ом, l = 0,1 м и = 4 В/нc из (3.13) ориентировочное значение максимального напряжения помехи составляет примерно 2 В.
Мероприятия по снижению емкостного влияния контуров с общим проводом системы опорного потенциала следующие:
-обеспечение малой емкости связи С13 из-за сокращения длины проводов l, уменьшения диаметра провода D, увеличения расстояния d между проводами 1 и 2, исключения параллельной их прокладки, применения изоляции проводов и печатных плат с малой диэлектрической проницаемостью;
-увеличение емкости С34 путем размещения сигнальных продав между проводниками системы опорного потенциала (см. рис. 3.7), скрутки сигнальных проводов и проводов системы опорного потенциала, использования свободных жил кабеля в качестве проводников системы опорного потенциала, расположение плоских проводов системы опорного потенциала на минимальном расстоянии при монтаже (на печатных платах, в плоскиx соединительных жгутах), что также сказывается благоприятно и при снижении гальванических влияний;
-выполнение предельно низкоомными токовых контуров, подверженных влиянию;
-ограничение скорости изменения напряжения (в логических схемах скорость переключения должна быть не выше, чем требуемая для функционирования);
-экранирование проводов и контуров, чувствительных к влиянию (экраны S на рис. 3.16, а, провода и экранные дорожки S на печатных платах рис. 3.17, экранирующие пластины между печатными платами SW или отсеки SG для отдельных модулей (рис. 3.18), металлизация пластмассовых корпусов).
Под влиянием экрана существенно уменьшается емкость С13, а емкость С34 увеличивается, что в соответствии с (3.12) и (3.13) приводит при одной и той же скорости изменения напряжения к снижению напряжения помехи.
Рис. 3.16. Экранирование линии:
а - целесообразное соединение экрана S с системой опорного потенциала 2, 4; б - схема замещения; в - нецелесообразное соединение экрана с системой опорного потенциала; г - двустороннее соединение экрана с проводом опорного потенциала; А - источник помех (); rq - выходное сопротивление источника помех; RS - входное сопротивление ступени в экранированном контуре
Рис. 3.17. Экранирующие дорожки на печатных платах:
а - экранирующая дорожка S (схема замещения такая же, что и на рис. 3.16, б); б - короткозамкнутая дорожка - экран S с перемычкой В служит также защитой от индуктивного влияния
Рис. 3.18. Экранирование функциональных блоков печатных плат перегородками SW или функциональных модулей коробками SG:
2, 4 —пластина опорного потенциала
В любом случав экран S должен быть изготовлен из хорошо проводящего материала, чтобы на сопротивлении экрана R и его индуктивности L (рис. 3.16, б) не было заметного падения напряжения, накладывающегося на полезный сигнал в защищаемом корпусе. Экран в источнике питания должен быть соединен с проводом системы опорного потенциала (например, с проводом 2 и 4 на рис. 3.16, б). При соединении экрана с системой опорного потенциала у чувствительного к помехам элемента (рис. 3.16, в) ток вызывает падение напряжения помехи ust на сопротивлении R и индуктивности L провода системы опорного потенциала, которое накладывается на входное напряжение защищаемого контура.
Двустороннее присоединение экрана к системе опорного потенциала (рис. 3.16, г) целесообразно тогда, когда экран предназначен для ослабления воздействующего магнитного поля. Впрочем, ток ist в контуре, образованном экраном S и проводом системы опорного потенциала 2, 4, не должен создавать в проводе 2, 4 недопустимого напряжения помехи, попадающего в защищаемый контур.
- «Томский политехнический университет»
- Предисловие
- Основные термины и определения
- 1. Общие понятия
- 2. Обеспечение электромагнитной совместимости
- 3. Характеристики и параметры технических средств, влияющих на эмс
- 4. Электромагнитные помехи
- 5. Измерительное оборудование и аппаратура
- 1. Общие вопросы электромагнитной совместимости
- 1.1. Электромагнитная совместимость. Электромагнитные влияния
- 1.2. Уровень помех. Помехоподавление.
- 1.2.1. Логарифмические относительные характеристики. Уровни помех.
- 1.2.2. Степень передачи. Помехоподавление
- 1.3. Основные типы и возможные диапазоны значений электромагнитных помех
- 1.3.1. Узкополосные и широкополосные процессы
- 1.3.2. Противофазные и синфазные помехи
- 1.4. Земля и масса
- 1.5. Способы описания и основные параметры помех
- 1.5.1. Описание электромагнитых влияний в частотной и временной областях
- 1.5.2. Представление периодических функций временив частотной области. Ряд Фурье.
- 1.5.3. Представление непериодических функций времени в частотной области. Интеграл Фурье.
- 1.5.4. Возможные диапазоны значений электромагнитных помех
- 1.5.5. Спектры некоторых периодических и импульсных процессов
- 1.5.6. Учет путей передачи и приемников электромагнитных помех
- Вопросы для самопроверки
- 2. Источники электромагнитных помех
- 2.1. Классификация источников помех
- 2.2. Источники узкополосных помех
- 2.2.1.Передатчики связи
- 2.2.2. Генераторы высокой частоты
- 2.2.3. Радиоприемники. Приборы с кинескопами. Вычислительные системы. Коммутационные устройства
- 2.2.4. Влияние на сеть
- 2.2.5. Влияние линий электроснабжения
- 2.3. Источники широкополосных импульсных помех
- 2.3.1. Исходный уровень помех в городах
- 2.3.2. Автомобильные устройства зажигания
- 2.3.3. Газоразрядные лампы
- 2.3.4. Коллекторные двигатели
- 2.3.5. Воздушные линии высокого напряжения
- 2.4. Источники широкополосных переходных помех
- 2.4.1. Разряды статического электричества
- 2.4.2. Коммутация тока в индуктивных цепях
- 2.4.3. Переходные процессы в сетях низкого напряжения
- 2.4.4. Переходные процессы в сетях высокого напряжения
- 2.4.5. Переходные процессы в испытательных устройствах высокого напряжения и электрофизической аппаратуре
- 2.4.6. Электромагнитный импульс молнии
- 2.4.7. Электромагнитный импульс ядерного взрыва
- 2.5. Классы окружающей среды
- 2.5.1. Классификация окружающей среды по помехам, связанным с проводами
- 2.5.2. Классификация окружающей среды по помехам, вызванным электромагнитным излучением
- Вопросы для самопроверки
- 3. Механизмы появления помех и мероприятия по их снижению
- 3.1. Обзор
- 3.2. Гальваническое влияние
- 3. 2.1. Гальваническое влияние через цепи питания и сигнальные контуры
- 3.2.2. Гальваническое влияние по контурам заземления
- 3.11. Гальваническое влияние через разомкнутую петлю заземлений:
- 3.3. Емкостное влияние
- 3.3.1. Гальванически разделенные контуры
- 3.3.2. Контуры с общим проводом системы опорного потенциала
- 3.3.3. Токовые контуры с большой емкостью относительно земли
- 3.3.4. Емкостное влияние молнии
- 3.4. Индуктивное влияние
- 3.5. Воздействие электромагнитного излучения
- Вопросы для самопроверки
- 4. Пассивные помехоподавляющие и защитные компоненты
- 4.1. Обзор
- 4.2. Фильтры
- 4.2.1. Принцип действия
- 4.2.2. Фильтровые элементы
- 4.2.3. Сетевые фильтры
- 4.3. Ограничители перенапряжений
- 4.3.1. Принцип действия
- 4.3.2. Защитные элементы
- 4.4. Экранирование
- 4.4.1. Принцип действия экранов
- 4.4.2. Материалы для изготовления экранов
- 4.4.3. Экранирование приборов и помещений
- 4.4.4. Экраны кабелей
- 4.5. Разделительные элементы
- Вопросы для самопроверки
- 5. Определение электромагнитной обстановки на объектах электроэнергетики
- 5.1. Общие положения
- 5.2. Основные этапы проведения работ по определению электромагнитной обстановки
- 5.2.1. Исходные данные и состав работ по определению эмо на объекте
- 5.2.2. Воздействие на кабели систем релейной защиты и технологического управления токов и напряжений промышленной частоты
- 5.2.3. Импульсные помехи, обусловленные переходными процессами в цепях высокого напряжения при коммутациях и коротких замыканиях
- 5.2.4. Импульсные помехи при ударах молнии
- 5.2.5. Электромагнитные поля радиочастотного диапазона
- 5.2.6. Разряды статического электричества
- 5.2.7. Магнитные поля промышленной частоты
- 5.2.8. Помехи, связанные с возмущениями в цепях питания низкого напряжения
- 5.2.9. Импульсные магнитные поля
- 5.3. Сравнение полученных значений с допустимыми уровнями
- Протокол № 1
- Вопросы для самопроверки
- 6. Электромагнитная совместимость технических средств в узлах нагрузки электрических сетей
- 6.1. Введение
- 6.2. Статический преобразователь как источник гармоник и другие источники гармоник
- 6.3. Влияние гармоник на системы электроснабжения
- 6.3.1. Элементы систем электроснабжения
- 6.3.2. Вращающиеся машины
- 6.3.3. Статическое оборудование
- 6.3.4. Устройства релейной защиты в энергосистемах
- 6.3.5 Оборудование потребителей
- 6.3.6. Влияние гармоник на измерение мощности и энергии
- 6.4. Ограничение уровней гармоник напряжений и токов
- Вопросы для самопроверки
- 7. Экологическое и техногенное влияние полей
- 7.1. Экологические аспекты электромагнитной совместимости
- 7.1.1. Роль электрических процессов в функционировании живых организмов
- 7.1.2. Электромагнитная обстановка на рабочих местах и в быту
- 7.1.3. Механизмы воздействия электрических и магнитных полей на живые организмы
- 7.2. Нормирование безопасных для человека напряженностей электрических и магнитных полей
- 7.2.1. Нормативная база за рубежом и в рф
- 7.2.2. Нормирование условий работы персонала и проживания людей в зоне влияния пс и вл свн
- 7.3. Экологическое влияние коронного разряда
- 7.3.1. Радиопомехи
- 7.3.2. Акустический шум
- 7.3.3. Нормативная база на радиопомехи и акустические шумы
- 7.4. Влияния линий электропередачи на линии связи
- 7.4.1. Опасные влияния
- 7.4.2. Мешающие влияния
- Вопросы для самопроверки
- Приложение 1
- Российская федерация
- Федеральный закон
- О государственном регулировании в области обеспечения электромагнитной совместимости технических средств
- Глава I. Общие положения
- Глава II. Основы организации государственного регулирования в области обеспечения электромагнитной совместимости технических средств
- Глава III. Система мер государственного регулирования в области обеспечения электромагнитной совместимости технических средств
- Глава IV. Основные права и обязанности физических и юридических лиц в области обеспечения электромагнитной совместимости технических средств
- Глава V. Заключительные положения
- Приложение 2 перечень технических характеристик, определяющих эмс тс
- Приложение 3 Нормативные документы в области электромагнитной совместимости
- Литература