1.3. Классификация моделей
В разных науках существуют различные способы классификации моделей. Классификация зависит от признака, лежащего в основе. Признаком может выступать отрасль знаний, способ представления модели, учёт временного фактора, учёт влияния фактора случайности, приспособляемости модели и др.
По отраслям знаний модели классифицируются на биологические, социологические, физические, экономические и др. Математические модели, используемые в экономике, можно классифицировать по особенностям моделируемого объекта – на макро- и микроэкономические. Макроэкономические модели описывают экономику страны как единое целое, связывая такие макроэкономические материальные и финансовые показатели, как ВВП, потребление, инвестиции, занятость, бюджет, инфляция, ценообразование и др. Микроэкономические модели описывают состояние структурных составляющих экономики, стратегии поведения фирм в неустойчивой или стабильной среде.
По целям моделирования и используемому инструментарию модели делятся на теоретические и прикладные, оптимизационные и равновесные. Прикладные модели обеспечивают возможность оценки параметров функционирования конкретных технико-экономических объектов и обоснования выводов для принятия управленческих решений.
Равновесные модели, присуще рыночной экономике, описывают поведение субъектов хозяйствования в стабильных устойчивых состояниях, но и в нерыночной экономике, где равновесие по одним параметрам компенсируется другими факторами.
Оптимизационные модели связаны в основном с микроуровнем и предполагают выбор наилучшего варианта по некоторому критерию: максимум прибыли, минимизация расходов, минимум отходов производства и т. д. Причём различают одно- и многокритериальные задачи.
По отношению к фактору времени модели подразделяются на статические и динамические, непрерывные и дискретные. Статические модели описывают состояние объекта в конкретный текущий момент или период времени, а динамические модели включают взаимосвязи переменных во времени. Динамические модели, в свою очередь, делятся на дискретные и непрерывные, в зависимости от характера изменения процесса во времени. Дискретное моделирование применяют для исследования систем, в которых входные и выходные характеристики изменяются во времени дискретно, через некоторый промежуток времени dt (например, часы), в противном случае применяют непрерывное моделирование.
По отношению к фактору случайности модели делятся на стохастические и детерминированные. Детерминированные модели предполагают жёсткие функциональные связи между переменными, а стохастические модели допускают наличие случайности, используя в качестве инструмента теорию вероятностей и математическую статистику.
По назначению модели бывают: балансовые (наличие ресурсов и их использование), трендовые (развитие моделируемой системы через тенденцию развития ее показателей), оптимизационные, имитационные (машинная имитация процессов).
По способу представления модели бывают предметные и знаковые. Предметные модели воспроизводят определенные геометрические, физические, динамические свойства объекта (глобус, карты…). Знаковые модели – это схемы, чертежи, формулы. Важнейшим видом знаковых моделей являются математические.
Выводы
Приступая к процессу моделирования какого-либо объекта или системы, нужно сначала определить и учесть все важные характеристики объектов системы. Затем необходимо определиться с целями моделирования. Что бы Вы хотели иметь в результате процесса моделирования? Какие цели являются основными, а какие второстепенными? В соответствии с этим выбрать нужный тип модели и использовать соответствующие методы моделирования. После построения модели необходимо оценить ее качество, адекватность, приспособляемость к различным условиям моделирования, определить точность используемых методов и сделать анализ результатов моделирования.
Контрольные вопросы и задания
К каким методам моделирования можно отнести известный метод решения систем дифференциальных уравнений Рунге-Кутта?
Классифицируйте по разным признакам модель транспортной задачи линейного программирования.
В чём состоит основная идея метода имитационного моделирования?
Сравните аппаратный и программный способ генерации случайных чисел по недостаткам и преимуществам.
Объясните способ генерации случайных чисел по методу серединных квадратов.
Объясните, на чём основан конгруэнтный метод получения случайных чисел.
Объясните на примере конкретных систем, как Вы понимаете основные свойства системы.
- Имитационное моделирование систем
- Предисловие
- Список сокращений
- Введение
- Глава 1. Основные понятия моделирования систем, классификация моделей и методов с точки зрения философии, моделирование представляет собой один из методов познания мира.
- 1.1. Основные понятия теории моделирования
- 1.2. Основные методы моделирования
- 1.3. Классификация моделей
- Глава 2. Математическое моделирование систем с использованием марковских случайных процессов
- 2.1. Элементы теории марковских случайных процессов, используемые при моделировании систем
- 2.2. Марковские цепи
- 2.3. Непрерывные цепи Маркова
- 2.4. Финальные вероятности состояний
- Необходимые и достаточные условия существования финальных вероятностей
- 2.5. Математическое представление потока событий
- 2.6. Компоненты и классификация моделей систем массового обслуживания (смо)
- 2.7. Расчёт основных характеристик смо на основе использования их аналитических моделей
- Одноканальные системы с отказами
- Одноканальные системы с ограниченной очередью
- Многоканальные системы с отказами
- Многоканальные системы с ограниченной очередью
- Контрольные вопросы и задания
- Глава 3. Имитационное моделирование в среде gpss
- 3.1. Общие сведения о языке gpss
- Основные объекты языка gpss
- 3.3. Основные блоки языка gpss
- Поступление транзактов в модель
- Уничтожение транзактов
- Моделирование работы одноканальных устройств
- Моделирование очередей
- Моделирование многоканальных устройств (мку)
- Изменение маршрута движения транзактов
- Разработка модели и процесс моделирования в gpss. Пример создания модели
- Управление процессом моделирования
- Объекты вычислительной категории языка: переменные и функции. Сохраняемые ячейки
- Определение и использование функций
- Работа с параметрами транзакта, приоритеты
- Блок mark
- Применение в моделях копий и организация синхронизации движения транзактов
- Использование блока test
- Контрольные задания по моделированию Моделирование систем с условием перераспределения заявок в заданном статистическом режиме
- Заключение
- Библиографический список
- Основные элементы стандартного отчёта
- Системные числовые атрибуты (сча)
- Сча транзактов
- Сча блоков
- Сча одноканальных устройств
- Сча очередей
- Сча таблиц
- Сча ячеек и матриц ячеек сохраняемых величин
- Сча вычислительных объектов
- Сча списков и групп
- 10. Какое действие выполняет этот оператор: transfer both,lab1,lab2
- 11. Какое действие выполняет этот оператор: transfer 0.4,lab1,lab2
- 12. Правильно ли описана эта команда: transfer ,met:
- 13. Какое действие выполняет этот блок: lines1 storage 2
- Индивидуальные зачётные задания по имитационному моделированию систем
- 4. Реорганизация заправочной станции
- 8. Модель швейного цеха
- 10. Моделирование работы заправочной станции
- 11.Моделирование работы станции скорой помощи
- 13. Модель автобусной остановки
- 14.Моделирование работы кафе
- 15. Задача о конвейере
- 17.Моделирование цеха обработки
- Алфавитно-предметный указатель
- Рассказова Марина Николаевна имитационное моделирование систем
- 644099, Омск, Красногвардейская, 9