4.2.4 Однофазний мостовий інвертор
Розглянемо конкретну схему, де у якості ключів використано транзистори. Схема (рис.4.35) поряд з мостом на транзисторахVТ1-VТ4 містить також зворотній міст на діодах VD1 - VD4, на який здійснюється перемикання струму навантаження на інтервалах, коли напруга і струм навантаження мають протилежний напрямок (при активно-індуктивному навантаженні струм запізнюється від напруги на кут φ).
Розглянемо спочатку роботу схеми при формуванні напруги прямокутної форми, коли модуляція відсутня. При цьому імпульси керування на пари транзисторів VТ1, VТ4 і VТ2, VТ3 подаються у протифазі, їх тривалість складає половину періоду вихідної частоти. З відкриванням транзисторів VТ1 і VТ4 полярність напруги на навантаженні позитивна, струм іН=іVТ повільно зростає, що обумовлено індуктивністю навантаження (рис.4.36). При цьому енергія передається у навантаження (активна потужність), а також накопичується у магнітному полі навантаження (реактивна потужність). У момент t2 імпульси керування з транзисторів VТ1, VТ4 знімаються іпотім з деякою затримкою, достатньою для запиранняVТ1, VТ4 (щоб виключити короткі перемикання джерела при одночасному вмиканні VТ1, VТ2 і VТ3, VТ4), подаються на VТ2, VТ3. Із закриванням транзисторів VТ1 і VТ4 струм навантаження продовжує протікати у тому ж напрямку за рахунок дії ЕРС самоіндукції еL у навантаженні (енергії, що була накопичена у магнітному полі). При цьому відкриваються зворотні діоди VD2 і VD3 (транзистори VТ2, VТ3 закриті до моменту t3) і струм іd, що споживається від джерела, змінює напрямок на протилежний. Полярність uН змінюється на негативну. Струм іН=іVD повільно зменшується до нуля.
Після переходу струму навантаження через нуль відкривається наступна пара транзисторів VТ2 і VТ3, напрямок струму навантаження іН змінюється на зворотній. При цьому струм іd на вході АІН змінний і пульсує. На інтервалах, де транзистори відкриті (активна потужність споживається від джерела), струм позитивний. Із відкриванням зворотних діодів напрямок струму іd змінюється на протилежний тому, що накопичена у навантаженні енергія повертається до джерела. Як правило, джерело виконано на діодах або тиристорах і має однобічну провідність, тому енергія йде на заряджання конденсатора. Середнє значення струму, що споживається АІН від джерела Іd, позитивне і при цьому потужність, що споживається, Pd=UdId >0.
Оскільки форма напруги повністю співпадає з напругою у напівмостовій схемі, то можна зробити такі ж самі висновки щодо гармонійного складу, відрізняються лише амплітуди. Амплітуда і діюче значення основної гармоніки вихідної напруги, що визначається розкладанням у ряд Фур’є дорівнює:
, UН(1)=0.9U.
- 4 Автономні інвертори
- Структура автономного інвертора
- 4.1 Автономні інвертори струму
- 4.1.1 Автономні інвертори струму на тиристорах, що не
- 4.1.1.1 Однофазна мостова схема автономного інвертора струму
- Активно-індуктивне навантаження.
- 4.1.2 Однофазний мостовий автономний інвертор струму з
- 4.1.3 Трифазний мостовий автономний інвертор струму
- 4.1.2 Автономні інвертори струму на повністю керованих ключах
- 4.1.2.1 Автономний інвертор струму з формуванням в навантаженні
- Можливі стани схеми аіс
- 4.1.2.2 Автономний інвертор струму у режимі джерела
- 4.2 Дворівневі автономні інвертори напруги
- 4.2.1 Базові схеми дворівневих автономних інверторів напруги
- 4.2.2 Формування і регулювання вихідної напруги
- 4.2.2.1 Формування напруги прямокутної форми
- 4.2.2.2 Використання широтно-імпульсної модуляції для
- 4.2.2.3 Перемодуляція як засіб підвищення вихідної
- 4.2.4 Однофазний мостовий інвертор
- 4.2.4.1 Формування вихідної напруги інвертору з
- Значно покращити гармонійний склад вихідної напруги інвертору у порівнянні з біполярною шім дозволяє використання однополярної шім.
- 4.2.4.2 Формування вихідної напруги інвертору з використанням однополярної шім
- Навантаження елементів схеми однофазного мостового аін за струмом.
- 4.2.5 Трифазний інвертор напруги
- Розв’язання.
- 4.2.5.1. Трифазний інвертор з шім
- 4.2.5.2 Векторна шім
- Цей недолік можна компенсувати використанням перемодуляції. У останній час розповсюдження знайшов інший метод, що отримав назву векторна шім (вшім) - Space Vector Pulse Width Modulation.
- 4.2.6 Недоліки дворівневих інверторів
- 4.3 Багаторівневі інвертори
- 4.3.1 Базові структури багаторівневих інверторів
- 4.3.2 Основні принципи формування вихідної напруги
- 4.3.2.1 Амплітудне регулювання
- Діюче значення першої гармоніки фазної і лінійної напруги:
- Гармонійний склад напруги
- 4.3.2.2 Вибіркове формування з заданим гармонійним складом
- 4.3.2.3 Попередня модуляція завдання гармоніками кратними трьом
- Коефіцієнт гармонік вихідної напруги
- 4.3.2.4 Багаторівнева шім
- 4.3.3. Багаторівневі інвертори з декількома рівнями напруги
- 4.3.3.1. Трирівневий інвертор з фіксуючими діодами
- Однофазний мостовий трирівневий аін.
- Середнє значення струму тиристора ключа к2а (vtк2а)
- 4.3.3.2 Чотирирівневий інвертор з фіксуючими діодами
- 4.3.3.3 П’ятирівневий інвертор з фіксуючими діодами
- 4.3.4 Багаторівневі інвертори з плаваючими конденсаторами
- 4.3.5 Каскадні схеми з послідовним з’єднанням інверторів
- 4.3.6 Каскадні схеми з паралельним з’єднанням інверторів
- 4.3.6.1 Каскадні схеми з безпосереднім з’єднанням вихідних кіл
- 4.3.6.2 Каскадні схеми з вихідним підсумовуючим трансформатором
- 4.3.7 Асиметричні каскадні схеми багаторівневих інверторів
- Кратність 1:1:4. Розв'язуються задачі перерозподілу завантаження аін для виключення циркуляції енергії і забезпечення мінімуму перемикань ключів аін3.
- 4.3.9 Схеми з «реактивною коміркою» та послідовним силовим
- 4.3.10 Каскадні схеми із з’єднанням інверторів через фази