6.1. Постановка задач параметрической оптимизации
Оптимальное проектирование – это процесс принятия наилучших (оптимальных в некотором смысле) решений с помощью ЭВМ. Данная проблема возникает и требует решения на всех этапах проектирования и во многом определяет технико-экономическую эффективность и технологичность проектируемых изделий.
На каждом этапе проектирования конструкции или технологии РЭС в начале работы приходится принимать решения в условиях неопределенности. Чаще всего это относится к построению или выбору варианта структуры объекта проектирования при в рамках блочно-иерархического подхода, то есть к задачам структурной оптимизации.
Выбор варианта структуры во многом снимает неопределeнность, что позволяет строить математическую модель и проводить на ее основе параметрическую оптимизацию, то есть подбор наилучшего набора значений управляемых параметров (например, номиналов индуктивностей, емкостей, резисторов, параметров активных элементов, координат компонентов на плате и др.), при которых выполняются ограничения (технические требования технического задания) и достигают своих экстремальных значений (максимума или минимума) критерии качества объекта проектирования (наиболее важные с точки зрения проектировщика схемные и конструктивные выходные параметры объекта проектирования, по которым оценивается его качество), например, частотные характеристики, коэффициент передачи, потребляемая и выходная мощности, габариты, длина соединительных проводников, перегрев, температура и т. п.). Если параметрическая оптимизация проходит достаточно с небольшими временными затратами (несложные устройства, использование упрощенных математических моделей, отсутствие жестrих требований на точность результатов и т. д.), может быть выполнен некоторый перебор различных структур построения проектируемого объекта, т.е. осуществлена структурная оптимизация устройства.
Решение задачи проектирования радиоэлектронного устройства с оптимальными характеристиками с использованием методов параметрической оптимизации включает три этапа:
1 – компьютерное моделирование устройства;
2 – составление целевой функции с выбором критериев оптимальности;
3 – поиск экстремума полученной целевой функции и определение оптимальных внутренних параметров устройства.
Моделирование (анализ) РЭС требует наличия соответствующих математических моделей и проводится в основном численными методами. Главным критерием моделирования наряду с необходимой точностью и адекватностью модели является быстродействие, скорость расчета на ЭВМ выходных параметров устройства.
Этап составления целевой функции при оптимизации устройства является самым творческим и неформальным. Целевая функция строится на основе выходных параметров устройства (характеристик), которые необходимо оптимизировать.
Таким образом, оптимальное проектирование РЭС сводится к составлению или выбору целевой функции, многократному анализу характеристик (выходных параметров) устройств и затем минимизации или максимизации целевой функции с применением в различных методов оптимизации, выбор конкретного из которых обусловлен спецификой данной решаемой задачи.
Критерии качества и ограничения задачи параметрической оптимизации прямо либо опосредованно зависят от выходных параметров объекта проектирования Y = (y1 ,y2., …, ym).
В простейшем случае в качестве критериев качества могут быть выбраны наиболее существенные с точки зрения проектировщика выходные параметры. Все остальные выходные параметры при этом необходимо учесть в виде ограничений. Критерии качества в литературе принято называть также целевыми функциями, критериями оптимальности, частными критериями качества, функциями цели и т.п.
Обозначим критерии качества Ki ,= Ki(x1, x2.,…, xn), i= 1,…, s, где s – количество критериев качества, а Ki(X) – либо один из выходных параметров Y = (y1, y2.,…, ym), либо Ki(X) = f(X), где зависимость f(X) задана.
Все ограничения задачи параметрической оптимизации получаются на основе анализа технических требований к параметрам объекта проектирования, содержащихся в ТЗ. Рассмотрим формализацию ограничений на примере выходных параметров Y (для внутренних параметров Х справедливы аналогичные рассуждения).
Технические требования имеют вид yj = TTj + Dj, где TTj – желаемое значение параметра yj, а Dj – его допустимый разброс ( j = 1, …, m ).
Математическая постановка задачи параметрической оптимизации как задачи математического программирования имеет вид
Ki=Ki(X) → extr,
gl(X) £ , (6.1)
i = 1, …, s, l = 1, …, L.
Множество наборов значений управляемых параметров Х, удовлетворяющих ограничениям g1(X) £ , l = 1, …, L называют областью работоспособности, или областью допустимых значений управляемых параметров.
Если функция Ki(X) имеет один минимум или максимум в заданной области работоспособности, то ее называют одноэкстремальной (унимодальной), если несколько, то -многоэкстремальной.
Каждый минимум (максимум) многоэкстремальной функции называют локальным, наименьший (наибольший) из них – глобальным.
Если ограничения на внутренние параметры gl(X) отсутствуют, то задача оптимизации называется безусловной, в противном случае – условной.
При практическом проектировании РЭС встают задачи поиска как безусловных, так и условных экстремумов унимодальных и многоэкстремальных функций.
Рассмотрим в качестве примера типичное ТЗ на разработку аналогового устройства – усилителя: «Коэффициент усиления К0 на средних частотах должен быть не менее 10000, входное сопротивление Rвх не менее 1 МОм, выходное сопротивление Rвых не более 200 кОм, верхняя граничная частота fв не менее 100 кГц, температурный дрейф нуля Uдр не более 50 мкВ/град; усилитель должен нормально функционировать в диапазоне температур от –50 до +60 0С, напряжения источников питания +5 и –5 В, предельные отклонения напряжений не более +0,5 %, усилитель эксплуатируется в стационарной установке, габариты платы 60х40 мм». В данном случае выходными параметрами являются Y = {Кo,Rвх, Rвых, fв, Uдр}.
К внешним воздействиям относятся температура окружающей среды и напряжения источников питания. Управляемыми параметрами являются параметры элементов схемы.
Область работоспособности
XР= {X10000 -Кo,1-Rвх,Rвых-200,100-fв, 50 -Uдр}.
Особенность технического задания для дискретных объектов (например, цифровых устройств) заключается в форме записи ограничений (условий работоспособности), которые могут иметь вид логических уравнений, таблиц истинности или даже текстовую форму.
Целью решения задачи параметрической оптимизации является определение такого набора значений параметров, при котором критерии качества достигают своих наилучших (минимальных или максимальных) значений.
Задача параметрической оптимизации (6.1) является многопараметрической, многокритериальной и содержит ограничения, все эти факторы определяют проблемы, возникающие в процессе ее решения. В зависимости от вида критериев качества и ограничений, проводят классификацию задач параметрической оптимизации (задач математического программирования). Если целевая функция и ограничения – линейные функции вида С0 + С1Х1+ С2Х2+…+ СnХn, то задача оптимизации называется задачей линейного программирования, в противном случае – задачей нелинейного программирования.
Если целевая функция квадратичная, а ограничения – линейные функции, то задача (6.1) называется задачей квадратичного программирования.
Если целевая функция и ограничения имеют произведения Х1 Х2 … Хn, то задачу (6.1) называют задачей геометрического программирования.
Если целевую функцию можно представить в виде суперпозиции функций f1 (f2 (f3 …( fk (Х))…)) , то задача (6.1) – это задача динамического программирования.
Если целевая функция и ограничения целочисленные функции то задача (6.1) – это задача целочисленного программирования
В зависимости от вида используемых математических моделей, задача оптимизации может быть детерминированной или стохастической, непрерывной или дискретной, аналитической или алгоритмической, при этом для каждого класса задач имеется свой, в достаточной степени апробированный, математический аппарат. Так, для задач линейного программирования успешно применяется симплекс-метод.
Характерной особенностью задач оптимизации в САПР является тот факт, что классические методы нахождения экстремума практически неприменимы, так как в большинстве случаев используются алгоритмические модели. В связи с этим вычисление значений критериев качества и их производных производится численными методами. Поэтому наиболее универсальными и эффективными для задач нелинейного программирования являются методы поисковой оптимизации.
Для обеспечения возможности применения методов поиска к решению задачи оптимизации необходимо некоторым образом упростить математическую постановку задачи: перейти от многокритериальной задачи оптимизации к однокритериальной и от задачи с ограничениями – к задаче безусловной оптимизации.
Как правило, при проектировании сложных систем задача параметрической оптимизации является многокритериальной, в этом случае для построения целевой функции используются специальные методы перехода к однокритериальной задаче оптимизации, а именно: вероятностный, аддитивный, мультипликативный, минимаксный методы и метод выделения главного критерия.
Для того, чтобы оценить, насколько хорошо удовлетворяют требованиям ТЗ значения частных критериев качества при заданном наборе значений внутренних параметров X = (x1, x2.,…,xn), нужно построить обобщенный критерий качества (обобщенную целевую функцию) f(Х), которая одновременно учитывает требования ко всем частным критериям.
Иными словами, от многокритериальной задачи параметрической оптимизации в виде:
K1(X)®extr
. . (6.2)
Ks(X) ® extr,
gl(X)≤ ,l = 1,…, L,
необходимо перейти к однокритериальной задаче:
f(X)® extr,
gl(X) ≤ , l=1,…,L, (6.3)
X=(x1, x2.,…,xn).
Наиболее часто на практике используются следующие методы построения целевой функции (методы векторной свертки частных критериев): метод главного критерия, аддитивный, мультипликативный, минимаксный и вероятностный.
В методе выделения главного критерия проектировщик выбирает один, наиболее важный с его точки зрения частный критерий качества, который и принимается за обобщенную целевую функцию. Требования к остальным частным критериям учитывают в виде ограничений F(Х) = Kt(X), где t – номер наиболее важного частного критерия.
В аддитивном методе каждому из частных критериев качества ставится в соответствие весовой коэффициент характеризующий важность данного критерия с точки зрения проектировщика.
При построении целевой функции в аддитивном методе используется соотношение: если f (X) ® max, то –f (X) ® min.
Чтобы построить минимизируемую целевую функцию f ¯(X) ®min, все минимизируемые частные критерии K¯i (X) () включают в аддитивную функцию со знаком плюс, то есть прибавляют к целевой функции, а все максимизируемые критерииK+i(X) () включают в аддитивную функцию со знаком минус, то есть вычитают из целевой функции:
(6.4)
или, для максимизируемой целевой функции:
(6.5)
где s – общее число частных критериев,
t – количество минимизируемых критериев.
В нашем примере четыре частных критерия, то есть s = 4,
t = 2:
K1(X) ® max,
K2(X) ® max,
K3(X) ® min,
K4(X) ® min.
Пусть 0тогда
f(X) = K1(X)K2(X)K3(X)K4(X) ® max,
или
f(X) = K1(X)K2(X)K3(X) K4(X) ® min.
Каждый частный критерий включаетcя в аддитивную целевую функцию по правилу: умножается на весовой коэффициент и входит в целевую функцию со знаком плюс или минус.
В мультипликативном методе используется правило: если f(X) ® max, то 1/ f(X) min при условии, что f(X) ¹ 0. В отличие от аддитивного метода, частные критерии не складывают, а перемножают.
В отличие от аддитивного метода, частные критерии не складывают, а перемножают. Кроме того, в мультипликативном методе не используют весовые коэффициенты. Целевая функция строится в виде дроби.
Если f(X) ®min, то в числитель дроби включают произведение всех минимизируемых критериев, а в знаменатель – произведение всех максимизируемых критериев:
(6.6)
или, если целевую функцию нужно максимизировать:
(6.7)
В нашем примере с применением мультипликативного метода свертки критериев целевые функции:
, (6.8)
. (6.9)
Кроме того, в мультипликативном методе не используют весовые коэффициенты. Целевая функция строится в виде дроби.
Минимаксный метод построения обобщенной целевой функции получил свое название потому, что в нем минимизируется максимальное отклонение частного критерия качества от его наилучшего, желаемого значения (технического требования, оговоренного в ТЗ).
, (6.10)
где X = (x1, x2.,…,xn), то есть
(6.11)
Логика минимаксного построения целевой функции заключается в том, что в каждый момент времени в качестве главного выбирается тот из частных критериев качества Ki(X), который в наибольшей степени удален от своего желаемого (оптимального) значения Ki*. В нашем примере (s = 4) при желаемых значениях K1* = 0,2; K2* = 1000; K3* = 25; K4* = 1 по минимаксному методу получим:
Другими словами, минимизируется “самый плохой” из частных критериев.
Рассмотрим три ситуации, изображенных на рис. 6.1.
Рис. 6.1
На оси у откладывается величина Ki(X)Ki*/Ki* для всех частных критериев (i = 1, 2, 3, 4 для нашего примера). В случае а) хуже всего удовлетворяет требованиям ТЗ критерий K3(Х), поэтому f(X)=K3(X) K3*/ K3*, то есть в течение некоторого времени усилия оптимизации будут направлены на приближение критерия K3(X)к его желаемому значению K3*При этом могут ухудшиться значения других критериев. Например, в случае б) для дальнейшей оптимизации будет выбран критерий K1(X).
Процесс продолжают до тех пор, пока все частные критерии не будут достаточно (с требуемой точностью) близки к своим желаемым значениям (случай в), изображенный на рис. 6.1. При этом приведение критериев к нормированному виду Ki(X)Ki*/ Ki*необходимо, чтобы в равной степени учитывать изменение критериев независимо от их абсолютных величин (как слишком больших, так и слишком малых, возможно различающихся на несколько порядков).
В случае вероятностного (статистического) метода построения обобщенной целевой функции выбирают f(X) = P(X) ® max, где P(X) – вероятность выполнения условий работоспособности, то есть вероятность того, что при наборе значений внутренних параметров X = (x1, x2.,…,xn) выходные параметры объекта проектирования будут удовлетворять требованиям ТЗ. Для определения вероятности Р(Х) на практике обычно используют метод статистических испытаний (метод Монте-Карло).
Для перехода от задачи параметрической оптимизации с ограничениями к задаче без ограничений, или задаче безусловной оптимизации
Ф(Х) extr (6.12)
используется один из следующих методов: метод неопределенных множителей Лагранжа; метод штрафных функций; метод барьерных функций.
В методе неопределенных множителей Лагранжа вводятся дополнительные переменные y1, y2.,…, yL, которые называют неопределенными множителями Лагранжа. Их количество равно числу ограничений L в задаче оптимизации. Целевая функция (функция Лагранжа) с учетом ограничений строится по формуле:
(6.13)
где X = (x1, x2.,…, xn), Y = ( y1, y2.,…, ym) , yl > 0, l = 1, …, L.
Формула (6.14) применима, если задача параметрической оптимизации ставится как задача максимизации, при этом для полученной целевой функции Ф(X, Y) необходимо найти седловую точку, то есть по переменным X = (x1, x2.,…,xn) проводится поиск максимума, а по переменным Y = (y1, y2.,…, ym) – поиск минимума, то есть
(6.14)
Основной проблемой при использовании метода Лагранжа является значительное увеличение размерности задачи параметрической оптимизации.
В методе штрафных функций целевую функцию задачи безусловной оптимизации получают по формуле:
Ф(Х) = f(X)+ k(X) extr, (6.15)
где X = (x1, x2.,…, xn) – набор управляемых параметров,
k(X) - штрафная функция,
k - номер итерации (шага) в методе поисковой оптимизации.
На практике задачи параметрической оптимизации решаются в основном итерационными (пошаговыми) методами, которые называют методами поисковой оптимизации. При этом на каждом шаге поиска значение штрафной функции k(X) уточняется (рассчитывается заново) по формуле:
(6.16)
где rk = 10k. Формула (6.16) применима, если задача параметрической оптимизации ставилась как задача минимизации.
Логика построения штрафной функции заключается в следующем: внутри области работоспособности ХР g l(X) , l = 1, …, L, на границе – gl(X) , а вне ХР gl (X) > (рис. 6.2).
Рис. 6.2. Построение штрафной функции
Целевая функция задачи безусловной оптимизации Ф(Х) должна быть максимально близкой к целевой функции f(Х) задачи с ограничениями внутри области работоспособности XР = {X = (x1, x2, …, xn)gl(X), l = 1,…,L} и быть значительно хуже (больше) функции f(Х) вне области работоспособности, то есть при gl(X) > .
Действительно, внутри области работоспособности ХР gl(X), l = 1,…,L, поэтому max{0, gl(X)} = 0 для всех ограничений, то есть внутри области работоспособности Ф(Х) = f(Х). Если ограничения выполнены, то никакого штрафа на целевую функцию не накладывается. В противном случае, если имеются нарушения одного или нескольких ограничений gt(X) > 1 t L, то каждое из них дает свой вклад в штрафную функцию k(X) в виде квадрата слагаемого [max{0,gt(Х)}], где max{0,gt(Х)}=gt(Х). Метод штрафных функций часто называют методом внешней точки, потому что при проведении дальнейшей оптимизации поисковыми методами для метода штрафных функций не важно, принадлежит ли начальная точка поиска области работоспособности ХР.
В методе барьерных функций на границе области работоспособности ХР ставится непреодолимый барьер (целевая функция задачи безусловной оптимизации Ф(Х) возрастает до бесконечности на границе области ХР). Поэтому начальная точка поиска обязательно должна принадлежать области работоспособности, если при построении целевой функции задачи безусловной оптимизации был применен метод штрафных функций, или метод внутренней точки. Целевую функцию Ф(Х) в методе барьерных функций получают по формуле
Ф(Х)=f(X)+ k(X) extr, (6.17)
где k - номер итерации поискового метода, весовой коэффициент rk=10-k, а барьерная функция k(X) вычисляется по формуле
(6.18)
Действительно, при приближении к границе ХР gl(Х) 0, так как Х ХР (метод внутренней точки) gl (X) , l = 1, …, L, поэтому gl(Х) → –. Именно поэтому в формуле (2.56) используется знак минус: k(X) возрастает до бесконечности при приближении к границе области работоспособности.
Главный недостаток метода барьерных функций заключается в том, что начальную точку поиска приходится выбирать внутри области работоспособности ХР, что представляет собой сложную задачу при малых размерах области ХР.
Таким образом, при небольшом количестве управляемых параметров Х и ограничений gl(X), целесообразно применять метод неопределенных множителей Лагранжа, если проверка принадлежности начальной точки поиска области ХР не слишком трудоемкая задача, то применяем метод барьерных функций, в противном случае – метод штрафных функций, который, хотя и является более универсальным, но впоследствии, в ходе поисковой оптимизации требует большего числа итераций по сравнению с методом барьерных функций.
- Введение
- 1. Основные понятия сапр
- 2. Концепция построения сапр
- 3. Системный подход к проектированию
- 4. Математическое моделирование рэс и технологических процессов
- 4.1. Свойства и классификация математических моделей
- 4.2. Оценки параметров распределений случайных величин и процессов
- 4.3. Планирование и обработка результатов пассивного эксперимента методами регрессионного анализа
- 4.4. Имитационное моделирование. Сети Петри
- 4.5. Системы массового обслуживания
- 4.6 Методы анализа полей в конструкциях рэс
- 5. Вероятностные методы исследования разброса параметров
- 6. Оптимизация параметров рэс
- 6.1. Постановка задач параметрической оптимизации
- 6.2. Методы поисковой оптимизации
- 7. Автоматизация решения типовых задач структурного синтеза
- 8. Тенденции и перспективы развития сапр
- Раздел 1. Основные понятия сапр
- Раздел 2. Концепция построения сапр
- Раздел 3. Системный подход к проектированию как основа повышения надежности и качества рэс и тп их изготовления
- Раздел 4. Математическое моделирование рэс и технологических процессов
- Раздел 5. Вероятностные методы исследования разброса параметров при проектировании конструкций и технологии рэс
- Раздел 6. Оптимизация параметров конструкций рэс и тп их изготовления
- Раздел 7. Автоматизация решения задач структурного синтеза в проектировании рэс
- Раздел 8. Тенденции и перспективы развития сапр
- 10. ЛабораторныЕ задания
- 10.1. Общие указания
- 10.2. Лабораторная работа № 1
- 10.2.1. Общие указания по выполнению лабораторной работы
- 10.2.2. Домашнее задание и методические указания по его выполнению
- 10.2.3. Вопросы к домашнему заданию
- 10.2.4. Лабораторное задание и методические указания по его выполнению
- 10.2.5. Контрольные вопросы
- 10.3. Лабораторная работа № 2
- 10.3.1. Общие указания по выполнению лабораторной работы
- 10.3.2. Домашнее задание и методические указания по его выполнению
- 10.3.3. Вопросы к домашнему заданию
- 10.3.4. Лабораторное задание и методические указания по его выполнению
- 10.3.5. Контрольные вопросы
- 10.4. Лабораторная работа № 3
- 10.4.1. Общие указания по выполнению лабораторной работы
- 10.4.2. Домашнее задание и методические указания по его выполнению
- 10.4.3. Вопросы к домашнему заданию
- 10.4.4. Лабораторное задания и методические указания по его выполнению
- 10.4.5. Контрольные вопросы
- 10.5. Лабораторная работа № 4
- 10.5.1. Общие указания по выполнению лабораторной работы
- 10.5.2. Домашнее задание и методические указания по его выполнению
- 10.5.3. Вопросы к домашнему заданию
- 10.5.4. Лабораторное задание и методические указания по его выполнению
- 10.5.5. Контрольные вопросы
- 10.6. Указания по оформлению отчета
- 11. Глоссарий
- Заключение
- Сд.Ф.05.01 Информационные технологии проектирования радиоэлектронных средств (Основы сапр)»
- Раздел 1. Введение
- Раздел 2. Концепция построения сапр
- Раздел 3. Системный подход к проектированию как основа повышения надежности и качества рэс и тп их изготовления
- Раздел 4. Математическое моделирование рэс и технологических процессов
- Раздел 5. Вероятностные методы исследования разброса параметров при проектировании конструкций и технологии рэс
- 6. Оптимизация параметров конструкций рэс и тп их изготовления
- Раздел 7. Автоматизация решения задач структурного синтеза в проектировании рэс
- Приложение 3
- Приложение 4
- Библиографический список
- Оглавление