6.3. Принципиальные недостатки полностью дифференциальных схем
Из принципиальных недостатков отмечают:
(1) Удвоение количества компонентов в схеме обработки сигнала (см рис. 6.1). Если номиналы компонентов на рис. 6.1b – такие же, как в соответствующей НЕсимметричной схеме на Рис. 6.1а, то площадь схемы увеличится практически в 2 раза. Ситуация, однако, облегчается тем, что в симметричной схеме при одинаковом с НЕсимметричным вариантом требуемым уровнем шума номиналы всех конденсаторов (и переключаемых, и интегрирующих) можно делать в 2 раза меньше, поскольку при этом шум переключаемого конденсатора (ПК) уменьшается как раз в раз. Площадь при этом, разумеется, увеличивается, но не более чем на 20 … 30% из-за увеличения вдвое количества компонентов и соединительных проводников, требующих некоторого расстояния между собой и определенного порядка расположения относительно друг друга.
(2) Необходимость введения в состав симметричного ОИТУН специальной схемы синфазной обратной связи (СОС). Речь идет о потенциалах на обоих симметричных выходах, которые, очевидно, должны быть симметричны друг другу относительно аналоговой «земли», т.е. половины питания, а при отсутствии дифференциального сигнала на входе потенциалы на обоих выходах должны быть равны половине питания (разумеется, с точностью, определяемой смещением нуля).
Вообще говоря, схема СОС является схемой автоматического регулировании, и ее проектирование является нетривиальной задачей, поскольку она должна отвечать следующим условиям:
– обеспечивать синфазную обратную связь с требуемой точностью во всем диапазоне выходного сигнала;
– иметь быстродействие, т.е. частоту единичного усиления в режиме малого сигнала и скорость изменения выходного напряжения в режиме большого сигнала во многих случаях не худшие, чем для дифференциального сигнала;
– обеспечивать минимальную дополнительную емкостную нагрузку на выходные узлы.
- В.В. Баринов ю.В. Круглов
- 1. Введение в анализ и синтез базовых узлов линейной обработки
- 1.1. Преобразование Лапласа как метод анализа линейных схем
- 1.2. Примеры расчета передаточных функций некоторых пассивных
- 1.2.1. Пассивный rc фильтр низких частот первого порядка
- 1.2.2. Простейший пассивный rlc фильтр низких частот
- 1.3. Примеры расчета передаточных функций простейших активных
- 1.3.1. Неинвертирующий усилитель
- 1.3.2. Инвертирующий усилитель
- 1.3.3. Активный инвертирующий интегратор
- 1.4. Введение в реализацию arc биквада
- 1.4.1. Принцип масштабирования пассивных элементов в arc фильтрах
- 1.5. Введение в концепцию переключаемых конденсаторов
- 1.5.1. Неинвертирующий переключаемый конденсатор с задержкой,
- 1.5.2. Неинвертирующий переключаемый конденсатор без задержки,
- 1.5.3. Инвертирующий пк интегратор без задержки, не чувствительный
- 1.5.4. Инвертирующий переключаемый конденсатор с задержкой,
- 1.5.5. Неинвертирующий пк интегратор с задержкой
- 1.6. Реализация биквада на базе переключаемых конденсаторах
- 1.7. Дискретизация аналогового сигнала. Идеальные выборки
- 1.7.1. Передаточная функция пк интегратора без задержки
- 1.7.2. Передаточная функция пк интегратора с задержкой
- Модели элементов интегральных схем
- 3. Базовые элементы кмдп операционных усилителей
- 3.1. Простейший усилитель напряжения с общим истоком
- 3.1.1. Простейший усилительный каскад с общим истоком и активной
- 3.1.2. Малосигнальные характеристики простейшего кмдп усилителя
- 3.1.3. Частота единичного усиления простейшего усилителя
- 3.1.4. Соотношение малосигнальных параметров простейшего
- 3.1.5. Простейший усилитель в режиме большого сигнала
- 3.1.6. Расчет выходного сопротивления
- 3.1.7. Элементарный анализ величины входной емкости. Емкость Миллера
- 3.1.8. Пример топологии простейшего усилителя
- 3.2. Выходное сопротивление и коэффициент передачи каскада с диодом в нагрузке
- 3.3. Токовое зеркало
- 3.3.1. Формирование режимных потенциалов в простейшем усилителе с общим истоком
- 3.4. Истоковый повторитель
- 3.4.1. Выходное сопротивление и входная емкость истокового
- 3.5. Метод увеличения выходного сопротивления усилителя
- 3.6. Каскодный усилитель
- 3.6.1. Передаточная функция простейшего каскодного усилителя с идеальной токовой нагрузкой
- 3.6.2. Роль емкости в выходном узле каскодного усилителя.
- 3.6.3. Диапазон изменения выходного напряжения
- 3.6.4. Схемы формирования постоянного смещения на затворе каскодного транзистора.
- 3.6.5. Каскодное токовое зеркало
- 3.6.6. Самосмещаемое каскодное токовое зеркало
- 3.7. Концепция активного каскодного транзистора (материал для дополнительного изучения подготовленными студентами с использованием периодической литературы)
- 3.8. Дифференциальный каскад
- 4. Архитектуры кмдп операционных усилителей
- 4.1. Методика оценки малосигнальных характеристик операционного усилителя
- 4.1.1. Методика замены нескольких действительных неосновных полюсов в передаточной функции операционного усилителя одним «эффективным» неосновным полюсом
- 4.1.2. Расчет запаса фазы операционного усилителя с действительными
- 4.2. Однокаскадные операционные усилители как операционные
- 4.2.1. «Телескопический» оитун
- 4.2.1.1. Базовые характеристики «телескопического» оитун
- 4.2.1.2. Упрощенная методика расчета фазы в «телескопическом» усилителе
- 4.2.1.3. Оценка частот неосновных полюсов «телескопического» оитун
- 4.2.1.4. Анализ переходных процессов
- 4.2.2. «Согнутый» каскодный оитун с р-канальным входом
- 4.2.2.1. Диапазоны входного синфазного и выходного напряжений
- 4.2.2.2. Режим малого сигнала
- 4.2.2.3. Переходной процесс в режиме большого сигнала
- 4.2.3. «Согнутый» каскодный оитун с n-канальным входом
- 4.3. Двухкаскадный операционный усилитель (оитун)
- 4.3.1. Базовая схема двухкаскадного оитун
- 4.3.2. Эквивалентная малосигнальная схема двухкаскадного усилителя
- 4.3.3. Передаточная функция двухкаскадного усилителя
- 4.3.4. Соотношение частот неосновного полюса, нуля и частоты единичного усиления
- 4.3.5. Частота единичного усиления двухкаскадного оитун
- 4.3.7. Реакция двухкаскадного оитун на большой входной сигнал.
- 4.3.8. Реакция двухкаскадного оитун на большой синусоидальный
- 4.3.9. Распространенная архитектура двухкаскадного оитун
- 5. Шум и его анализ в кмдп аналоговых имс
- 5.1. Основные определения
- 5.1.1. Cуммирование шумов
- 5.1.2. Анализ шума в частотной области
- 5.2. Пример расчета шума arc фильтра первого порядка
- 5.2.1. Реакция на шумовой источник тока
- 5.2.2. Реакция на шумовой источник тока
- 5.2.3. Реакция на шумовой источник напряжения
- 5.4. Приведенный ко входу собственный «белый» шум повторителя
- 5.5. Собственный шум многокаскадного усилителя
- 5.6. Шум каскодного усилителя
- 6. Полностью дифференциальные оитун
- 6.1. Базовая архитектура полностью дифференциальных схем
- 6.2. Принципиальные преимущества полностью дифференциальных схем
- 6.2.1. Зависимость потенциала общего истока дифкаскада от сигнала
- 6.3. Принципиальные недостатки полностью дифференциальных схем
- 6.4. Варианты непрерывных во времени схем синфазной обратной связи (сос).
- 6.4.1. Схема с ограниченным диапазоном входных сигналов.
- 6.4.2. Непрерывная во времени cхема сос с максимальным диапазоном
- 6.4.3. Варианты схем синфазной обратной связи на базе переключаемых конденсаторов