4.3.2. Эквивалентная малосигнальная схема двухкаскадного усилителя
На рис. 4.5 приведена эквивалентная малосигнальная схема 2-х каскадного усилителя. В этой схеме добавлен паразитный элемент – паразитная ёмкость на выходе 1 – го каскада (узелD), равная сумме:
– n+p и p+n областей стоков исоответственно;
– ёмкостей затвор – сток и;
– ёмкости затвор – исток (ёмкость затвор – стокпараллельнаи входит в её состав).
Рис. 4.5. Эквивалентная малосигнальная схема двухкаскадного усилителя
По умолчанию предполагается, что паразитная ёмкость на выходе второго каскада входит в состав суммарной емкости . Паразитная составляющаяравна сумме (А) паразитных емкостейn+p и p+n областей стоков исоответственно и (В) емкостей затвор-сток транзисторови.
На эквивалентной схеме:
–крутизна по затвору входного транзистора дифкаскада;
–крутизна по затвору входного транзистора второго каскада;
–выходное сопротивление в узле D на выходе первого каскада;
–выходное сопротивление в узле OUT на выходе второго каскада.
Как показано в главе 3, малосигнальная эквивалентная схема дифференциального каскада идентична оной для простейшего (базового) усилительного каскада и имеет такой же низкочастотный коэффициент усиления:
(4.28)
Здесь и далее: – низкочастотный коэффициент усиления первого каскада, а– второго каскада.
Второй каскад представляет собой простейший базовый усилительный каскад, поэтому также
(4.29)
На низких частотах никакие конденсаторы себя не проявляют, поэтому низкочастотный коэффициент усиления двухкаскадного усилителя равен:
(4.30)
С увеличением частоты импеданс конденсаторауменьшается, так что сток и затвор транзистораможно считать закороченными. При этом выходное сопротивление узла выхода становится близким к.
Этот эффект наблюлается на достаточно высоких частотах, но ведь и фазовый сдвиг на выходе усилителя нас интересует именно на высоких частотах. Итак, неосновной полюс можно предположить известным:
(4.31)
В целях простоты оценки в (4.31) не учтена связь емкостей ичерез конденсатор.
Для оценки основного полюса отметим, чтоявляется емкостью Миллера, на которую нагружен источник напряжения, представляемый первым каскадом и имеющим большое выходное сопротивление. Это дает основание предположить, что
(4.32)
Очевидно, что .
- В.В. Баринов ю.В. Круглов
- 1. Введение в анализ и синтез базовых узлов линейной обработки
- 1.1. Преобразование Лапласа как метод анализа линейных схем
- 1.2. Примеры расчета передаточных функций некоторых пассивных
- 1.2.1. Пассивный rc фильтр низких частот первого порядка
- 1.2.2. Простейший пассивный rlc фильтр низких частот
- 1.3. Примеры расчета передаточных функций простейших активных
- 1.3.1. Неинвертирующий усилитель
- 1.3.2. Инвертирующий усилитель
- 1.3.3. Активный инвертирующий интегратор
- 1.4. Введение в реализацию arc биквада
- 1.4.1. Принцип масштабирования пассивных элементов в arc фильтрах
- 1.5. Введение в концепцию переключаемых конденсаторов
- 1.5.1. Неинвертирующий переключаемый конденсатор с задержкой,
- 1.5.2. Неинвертирующий переключаемый конденсатор без задержки,
- 1.5.3. Инвертирующий пк интегратор без задержки, не чувствительный
- 1.5.4. Инвертирующий переключаемый конденсатор с задержкой,
- 1.5.5. Неинвертирующий пк интегратор с задержкой
- 1.6. Реализация биквада на базе переключаемых конденсаторах
- 1.7. Дискретизация аналогового сигнала. Идеальные выборки
- 1.7.1. Передаточная функция пк интегратора без задержки
- 1.7.2. Передаточная функция пк интегратора с задержкой
- Модели элементов интегральных схем
- 3. Базовые элементы кмдп операционных усилителей
- 3.1. Простейший усилитель напряжения с общим истоком
- 3.1.1. Простейший усилительный каскад с общим истоком и активной
- 3.1.2. Малосигнальные характеристики простейшего кмдп усилителя
- 3.1.3. Частота единичного усиления простейшего усилителя
- 3.1.4. Соотношение малосигнальных параметров простейшего
- 3.1.5. Простейший усилитель в режиме большого сигнала
- 3.1.6. Расчет выходного сопротивления
- 3.1.7. Элементарный анализ величины входной емкости. Емкость Миллера
- 3.1.8. Пример топологии простейшего усилителя
- 3.2. Выходное сопротивление и коэффициент передачи каскада с диодом в нагрузке
- 3.3. Токовое зеркало
- 3.3.1. Формирование режимных потенциалов в простейшем усилителе с общим истоком
- 3.4. Истоковый повторитель
- 3.4.1. Выходное сопротивление и входная емкость истокового
- 3.5. Метод увеличения выходного сопротивления усилителя
- 3.6. Каскодный усилитель
- 3.6.1. Передаточная функция простейшего каскодного усилителя с идеальной токовой нагрузкой
- 3.6.2. Роль емкости в выходном узле каскодного усилителя.
- 3.6.3. Диапазон изменения выходного напряжения
- 3.6.4. Схемы формирования постоянного смещения на затворе каскодного транзистора.
- 3.6.5. Каскодное токовое зеркало
- 3.6.6. Самосмещаемое каскодное токовое зеркало
- 3.7. Концепция активного каскодного транзистора (материал для дополнительного изучения подготовленными студентами с использованием периодической литературы)
- 3.8. Дифференциальный каскад
- 4. Архитектуры кмдп операционных усилителей
- 4.1. Методика оценки малосигнальных характеристик операционного усилителя
- 4.1.1. Методика замены нескольких действительных неосновных полюсов в передаточной функции операционного усилителя одним «эффективным» неосновным полюсом
- 4.1.2. Расчет запаса фазы операционного усилителя с действительными
- 4.2. Однокаскадные операционные усилители как операционные
- 4.2.1. «Телескопический» оитун
- 4.2.1.1. Базовые характеристики «телескопического» оитун
- 4.2.1.2. Упрощенная методика расчета фазы в «телескопическом» усилителе
- 4.2.1.3. Оценка частот неосновных полюсов «телескопического» оитун
- 4.2.1.4. Анализ переходных процессов
- 4.2.2. «Согнутый» каскодный оитун с р-канальным входом
- 4.2.2.1. Диапазоны входного синфазного и выходного напряжений
- 4.2.2.2. Режим малого сигнала
- 4.2.2.3. Переходной процесс в режиме большого сигнала
- 4.2.3. «Согнутый» каскодный оитун с n-канальным входом
- 4.3. Двухкаскадный операционный усилитель (оитун)
- 4.3.1. Базовая схема двухкаскадного оитун
- 4.3.2. Эквивалентная малосигнальная схема двухкаскадного усилителя
- 4.3.3. Передаточная функция двухкаскадного усилителя
- 4.3.4. Соотношение частот неосновного полюса, нуля и частоты единичного усиления
- 4.3.5. Частота единичного усиления двухкаскадного оитун
- 4.3.7. Реакция двухкаскадного оитун на большой входной сигнал.
- 4.3.8. Реакция двухкаскадного оитун на большой синусоидальный
- 4.3.9. Распространенная архитектура двухкаскадного оитун
- 5. Шум и его анализ в кмдп аналоговых имс
- 5.1. Основные определения
- 5.1.1. Cуммирование шумов
- 5.1.2. Анализ шума в частотной области
- 5.2. Пример расчета шума arc фильтра первого порядка
- 5.2.1. Реакция на шумовой источник тока
- 5.2.2. Реакция на шумовой источник тока
- 5.2.3. Реакция на шумовой источник напряжения
- 5.4. Приведенный ко входу собственный «белый» шум повторителя
- 5.5. Собственный шум многокаскадного усилителя
- 5.6. Шум каскодного усилителя
- 6. Полностью дифференциальные оитун
- 6.1. Базовая архитектура полностью дифференциальных схем
- 6.2. Принципиальные преимущества полностью дифференциальных схем
- 6.2.1. Зависимость потенциала общего истока дифкаскада от сигнала
- 6.3. Принципиальные недостатки полностью дифференциальных схем
- 6.4. Варианты непрерывных во времени схем синфазной обратной связи (сос).
- 6.4.1. Схема с ограниченным диапазоном входных сигналов.
- 6.4.2. Непрерывная во времени cхема сос с максимальным диапазоном
- 6.4.3. Варианты схем синфазной обратной связи на базе переключаемых конденсаторов