4.1. Понятие элементарного электрического излучателя
Возможность излучения электромагнитных волн и их распространение следует из уравнений Максвелла:
, .
Из этих уравнений видно следующее:
Ток может циркулировать в свободном пространстве в виде тока смещения (см. выражение (1.14)) даже при токе проводимости равном нулю.
Ток проводимости и ток смещения создают вокруг себя магнитное поле.
Магнитное поле порождает электрическое поле, которое в свою очередь, создает ток смещения, и далее цикл повторяется.
Распространение тока смещения в пространстве связано с распространением электромагнитной энергии, а принципиальная возможность излучения этой энергии следует из теоремы Умова-Пойнтинга. Таким образом, любая электрическая схема способна создавать в пространстве токи смещения, т.е. излучать электромагнитную энергию.
Рассмотрим примеры, представленные на рис. 4.1.
а) б) в)
Рисунок 4.1 – Примеры излучателей
Основное требование к излучателю – минимум связанной с ним энергии, т.е. не излучаемой в пространство. Эта энергия называется реактивной.
В этом смысле приведенный пример на рис. 4.1,а – неудачен, так как основная часть энергии является реактивной.
В схеме рис. 4.1,б более удачно расположены пластины конденсатора, т.к. меньшая часть энергии является реактивной. И, наконец, наиболее удачной является схема на рис. 4.1,в.
Элементарный электрический излучатель, или иначе диполь Герца – это короткий, по сравнению с длиной волны (l << ), отрезок проводника с током который по всей длине имеет постоянную амплитуду и фазу и меняется во времени по гармоническому закону.
В этом случае в однородной и изотропной среде векторы иудовлетворяют векторным уравнениям Даламбера (см. равенства (1.19), (1.20)). Применяя символический метод, из этих уравнений получим неоднородные уравнения Гельмгольца:
(4.1)
где – комплексное волновое число;.
Если известно распределение источников , то для нахождения электромагнитного поля, т.е. для решения задачи излучения, можно предложить следующий путь:
По формуле
, (4.2)
где R – расстояние между точкой наблюдения и точкой интегрирования, определим комплексную амплитуду вектора.
По формуле
определим .
По формулам
, (4.3)
определим векторы и.
Применим вышеуказанный алгоритм для решения задачи излучения элементарного электрического излучателя.
Анализ поля излучения элементарного электрического излучателя удобно и проще проводить в сферической системе координат (r, , ). Расположим элементарный электрический излучатель с известной комплексной амплитудой тока в центре сферической системы координат (см. рис. 4.2).
Воспользовавшись формулой (4.2), легко получить выражения для поля, создаваемого элементарным электрическим излучателем длиной l. Эти выражения имеют вид:
, (4.4)
, (4.5)
где волновое число.
Соотношения (4.4) и (4.5) определяют комплексные амплитуды векторов и, возбуждаемые элементарным электрическим излучателем в однородной изотропной среде без потерь на расстоянииr >> l от него.
В соотношениях (4.4) и (4.5) r – расстояние, отсчитываемое в сферической системе координат от центра элементарного электрического излучателя до точки наблюдения; – угол между осью диполя и направлением на точку наблюдения; и – единичные орты, направление которых показано на рис. 4.2.
Из соотношений (4.4) и (4.5) следует, что вектор всегда перпендикулярен вектору. При этом векторлежит в плоскости, проходящей через ось элементарного электрического излучателя (меридиональная плоскость), а векторпараллелен экваториальной плоскости.
- 157 Техническая электродинамика
- Введение
- Раздел 1 теоретические основы электродинамики
- 1.1. Источники электромагнитного поля
- 1.2. Векторы электромагнитного поля
- 1.3. Материальные уравнения. Классификация сред
- 1.4. Уравнения Максвелла в дифференциальной и интегральной
- 1.5. Граничные условия для векторов электромагнитного поля
- 1.6. Метод комплексных амплитуд
- 1.7. Уравнения Максвелла для комплексных векторов
- 1.8. Комплексная диэлектрическая и магнитная
- 1.9. Энергия электромагнитного поля
- Раздел 2 распространение электромагнитных волн в свободном пространстве
- 2.1. Решение уравнений Максвелла для комплексных амплитуд
- 2.2. Плоские электромагнитные волны в среде без потерь
- 2.3. Плоские электромагнитные волны в среде с тепловыми потерями
- 2.4. Поляризация электромагнитных волн
- 2.5. Распространение волн в анизотропных средах
- Раздел 3 электромагнитные волны в направляющих системах
- 3.1. Типы направляющих систем
- 3.2. Классификация направляемых волн
- 3.3. Особенности распространения волн в направляющих системах
- 3.4. Волны в прямоугольном волноводе
- 3.5. Волны в круглом волноводе
- 3.6. Волны в коаксиальном кабеле
- 3.7. Волны в двухпроводной и полосковой линиях
- 3.8. Диэлектрический волновод. Световод
- 3.9 Направляющие системы с медленными волнами
- 3.10. Затухание волн в направляющих системах
- Раздел 4 излучение электромагнитных волн
- 4.1. Понятие элементарного электрического излучателя
- 4.2. Поле элементарного электрического излучателя в дальней зоне
- 4.3. Мощность и сопротивление излучения элементарного электрического излучателя
- 4.4. Диаграмма направленности элементарного электрического излучателя
- 4.5. Перестановочная двойственность уравнений Максвелла
- 4.6. Элементарный магнитный излучатель и его поле излучения
- 4.7. Принцип эквивалентности. Принцип Гюйгенса
- 4.8. Принцип взаимности
- 4.9. Параметры антенн
- 4.10. Симметричный электрический вибратор
- 4.11. Директорные антенны
- 4.12. Зеркальные антенны
- Раздел 5 распространение электромагнитных волн
- 5.1. Законы Снеллиуса. Коэффициенты Френеля
- 5.2. Явление полного прохождения волны через границу двух сред
- 5.3. Явление полного отражения от плоской границы раздела
- 5.4. Структура электромагнитного поля при полном
- 5.5. Поле вблизи поверхности хорошего проводника. Приближенные
- 5.6. Дифракция электромагнитных волн
- 5.7. Параметры Земли. Учет рельефа земной поверхности
- 5.8. Параметры тропосферы. Влияние тропосферы на распространение радиоволн. Тропосферная рефракция
- 5.9. Строение ионосферы. Понятие критической и максимально
- 5.10. Классификация радиоволн по способам распространения
- 5.11. Классификация радиоволн по диапазонам
- 5.12. Расчет действующего значения напряженности поля. Понятие
- 5.13. Особенности распространения радиоволн различных диапазонов
- Литература
- Приложение а вывод уравнений максвелла в дифференциальной форме
- Приложение в вывод граничных условий для векторов электромагнитного поля
- Приложение с волноводные устройства
- Режимы работы линий передачи конечной длины. Согласование линии с нагрузкой
- Приложение е математический аппарат электродинамики